Government Affairs Seminar Real Compliance Stories: Waukesha Clean Water Plant

Zach Eisner¹ and Dustin Maas, PE²
¹ City of Waukesha
² Jacobs, Milwaukee

Background

Regulatory Background

- Effluent discharged to the Fox River in Waukesha will be subject to the typical Water Quality-based Effluent Limitation (WQBEL) for stream discharges of 0.075 mg/L phosphorus (P)
- The City of Waukesha has natural radium contamination in their groundwater supply
- The City of Waukesha received approval to withdraw Lake Michigan water to replace the existing groundwater supply
- A portion of the treated effluent from the City of Waukesha Clean Water Plant (CWP), equal to the amount withdrawn from Lake Michigan, must be returned to the Lake Michigan watershed
- A stricter effluent limit of 0.06 mg/L P was set for the portion of the effluent discharged to the Root River in the Lake Michigan watershed.

Existing Treatment for Phosphorus and TSS Compliance

- The CWP's previous phosphorus and TSS limits were 0.6 mg/L P and 10 mg/L TSS
- Achieved with dual point ferric chloride dosing
 - Add to mixed liquor channel between aeration basins and secondary clarifiers
 - Add to secondary effluent upstream of tertiary treatment
- Tertiary treatment consists of a rapid mixer, air mixed flocculation channels, tertiary clarifiers, and dual media filters

Alternatives Identified for Evaluation

Alternative 1 – Ballasted Flocculation and Settling (Comag) ~15 MGD (FCAP)

 Alternative 2 – Cloth Media Filtration Retrofit and Coagulation, Flocculation, and Tertiary Settling Improvements

Alternative 3 - Granular Media Filtration Rehabilitation and Coagulation,

Flocculation, and Tertiary Settling Improvements

Selected Approach

- Ballasted flocculation (Alt. 1) and conventional sand filtration rehabilitation (Alt. 3a) have similar capital costs.
- Conventional sand filtration rehabilitation (Alt. 3a) had lowest NPV and annual costs.
- Conventional sand filtration rehabilitation (Alt. 3a) yielded highest non-monetary score
- Conventional sand filtration rehabilitation selected for implementation.

Alternative	Capital Cost	Year 1 Operating Costs	20 Yr Present Worth	Year 1 O & M + SRF Loan Payment
Alt 1 Ballasted Floc/Sed	\$8,204,000	\$308,000 ² (\$353,000) ³	\$15,192,000	\$855,000
Alt 2a Cloth with Conventional Clarification¹	\$10,346,000	\$168,000 ² (\$322,000) ^{3,4}	\$16,747,000	\$956,000
Alt 2b Cloth with Lamella Clarification ¹	\$15,531,000	\$183,000 ² (\$281,000) ³	\$21,106,000	\$1,231,000
Alt 3a Sand with Conventional Clarification	\$7,449,000	\$133,000 ² (\$260,000) ^{3,4}	\$12,600,000	\$715,000
Alt 3b Sand with Lamella Clarification	\$12,633,000	\$148,000 ² (\$218,000) ³	\$16,958,000	\$991,000

¹For 6 cloth filters

⁴Approximately \$90,000/year of O&M accounts for replacement of existing clarifier mechanisms during the 20 year evaluation.

	Weight	Alt 1	Alt 2a	Alt 2b	Alt 3a	Alt 3b		
Clarification	(1 to 10)	Ballasted	Conventional	Lamella	Conventional	Lamella	(Bad)	(Good)
Filtration		None	Cloth	Cloth	Sand	Sand	Zero	Five
Iron Handling	2	2	3	3	3	3	Highest	Lowest
Polymer Handling	3	2	3	2	4	3	Highest	Lowest
Reliability	10	3	4	3	5	4	Hard to Meet	Best
Redundancy	9	3	4	3	5	4	Least	Most
Lower P Limit (<0.06)	5	2	2	2	4	3	Hardest	Easiest
Ease of Operation	8	3	3	2	4	3	Hardest	Easiest
Maintenance	8	3	4	3	4	3	Most	Least
Ease of Adoption	5	3	3	3	5	4	Hardest	Easiest
Constructability	2	4	3	3	5	4	Hardest	Easiest
Const. Phasing	3	5	3	3	4	4	Hardest	Easiest
Solids Handling	3	3	4	4	4	4	Most	Least
	Score	172	199	161	256	206	Highest Sco	re is best

²Includes chemical, solids handling, and energy cost only

³Includes Annual replacement and O&M costs in addition to chemical, solids handling, and energy

Selected Approach

Challenging today. Reinventing tomorrow.

Jacobs

Tertiary Project Scope

- Tertiary Flocculation/Settling Improvements:
 - Replacement of air flocculation with vertical paddle wheel flocculators
 - Addition of settled chemical solids recycle to promote floc formation/optimize chemical use
- Filtration Improvements
 - Incorporation of air/water backwash (new blower)
 - Addition of media retaining baffles to backwash troughs and replacement of underdrains with AWI stainless underdrains to maximize bed depth
 - Media replacement with medium-coarse mono-media sand
 - Influent/effluent piping and valve improvements

Site Map

Rapid Mix Design Criteria

Item	Value	Units
Ferric rapid mix no.1, mixing volume	1,500	gallons
Ferric rapid mix no.1, mixing intensity	400	sec ⁻¹
Ferric dose, minimum	5	mg/L
Ferric dose, average	18	mg/L
Ferric dose, max	66	mg/L

Flocculation Design Criteria

Item	Value	Units
Flocculation/sedimentation trains, number of basins	4	_
Flocculation basins, number of stages	3	_
Flocculation basins, dimensions (l x w x side water depth)	14 x 65 x 12.5 14 x 21.67 x 12.5	Feet (total) Feet (each zone)
Flocculation basins, detention time (at 14 MGD)	35.3	minutes
Flocculation basins, detention time (at 31.46 MGD)	15.4	minutes
Flocculation basins, stage 1 mixing intensity	40-70	sec ⁻¹
Flocculation basins, stage 2 mixing intensity	20-50	sec ⁻¹
Flocculation basins, stage 3 mixing intensity	5-30	sec ⁻¹
Polymer dose	0.25 – 1.0	mg/l
Flow Path	Serpentine, Baffled	_

Flocculation Design Criteria

Flocculation Photos

Tertiary Clarifiers

Tertiary Filters – Design Criteria

ltem	Value	Units
Individual cell area	312	ft ²
Individual filter area	624	ft ²
Cell Dimension Filter Dimension	12x26 24x26	ft ft
Number of filters (7 duty + 1 standby)	8	#
Peak loading rate (one filter out of service)*****	5.0	gpm/ft²
Capacity per filter	4.49	mgd

^{*****}With coagulation/flocculation and tertiary clarifiers, we typically design filter loading rate at >8 gpm/ft². Capacity per filter would then be >=7.19 MGD.

Tertiary Filters

Tertiary Filters

Backwash System – Design Criteria

- Air Scour
 - 2-4 scfm/sf (2,496 scfm)
 - 2-5 minutes
- Concurrent Wash
 - 3-6 gpm/sf (3,744 gpm)
 - 10-15 minutes (12 minutes)
- Water Wash
 - 6-12 gpm/sf (7,488 gpm)
 - **3.5**-8 minutes
 - Water wash volume should be >1 bed volume (23,341 gallons minimum)

Filter Improvements

Performance

Jacobs

Challenging today. Reinventing tomorrow.

Implementation

- August 2021:Coagulation, flocculation, and sedimentation improvements operational.
- Filter Improvements:
 - October 2021: 3 of 8 rehabilitated filters on-line
 - February 1, 2022: All filters operational
- Impacted groundwater >25% of plant capacity
- New controls in service
- Back on track April 2022

Implementation

- April 2022 to present:
 - 0.056 mg-P/L
 - June 30, 2022 0.075 mg-P/L limit
- October 9, 2023:
 - Discharge to Root River
 - 0.06 mg-P/L limit
 - 0.051 mg-P/L
- Ferric chloride dosing optimization
 - 20 mg/L Fe each dosing point, 40 mg/L Fe total
 - 450 gpd at average flow
- Maintain minimum ferric chloride tank level or pump

²² capacity drops ©Jacobs 2024

Questions?

Zack Eisner

ZEisner@waukesha-wi.gov

Dustin Maas, PE

Dustin.Maas@jacobs.com

