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Examining PFAS Phase Behavior
and Transformation in WWTPs:

Potential Mitigation Strategies
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Objectives

* Highlight importance of precursorsin WWTPs
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* PFAS accumulation in solids dewatering streams

* Understand impacts of aeration on PFAS fate in WWTPs
- PFAS accumulation in foams
- PFAS in aerosols
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Background

* PFAS present in nearly all domestic WWTPs

* Typical WWTP processes generally do little
to remove PFAS

* Processes that concentrate/transform PFAS

may be important
PFAS accumulation in foam

PFAS accumulation in biosolids
PFAS precursor transformation during digestion
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Precursors are Prevalent in WWTP Aqueous Flows

B Influent (A queous) Quantifiable PFAS
@ Influent (Aqueous) TOP

BEffluent Quantifiable PFAS
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« ~66% of PFAS semi-quantified precursors in influent
+ ~51% of PFAS semi-quantified precursors in effluent
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Precursors in Finished Biosolids

e Biosolids from7 WWTPs

« Various processing and final solids forms PFAS analysis: Linda Lee - Purdue
Sulfonates Carboxylates
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PFAS Enrichment in Solids Dewatering Streams

3 WWTPs sampled:

Sludge
Secondary J / Dewatering

Q Water recycled

Clarifiers K (gravity belt Facility 1

upstream

Thickened waste activated sludge
Digested
Sludge Anaerobic solids / Dewatering .
Digestion K (centrifuge) Facility 2
Water recycled Facil ity 3
upstream
Biosolids

Compare PFAS concentrations and mass flows in recycled dewater stream to WWTP influents
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PFAS Enrichment in Solids Dewatering Streams

SPFAS (ng/L)

downstream of

anaerobic digestors
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Facility 1 Facility 2 Facility 3

* For facilities 2 and 3, PFAS in dewatering
streams primarily FTCAs (diPAP transformation
product)

« diPAPs in facility 3 biosolids
5-times greater than in facility 2
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Dewatering Contribution: PFAS Mass Flows [g/day]

(Target Analytes Only)

Facility 1: 0.1% of influent PFAS mass flow

Facility 2: 4.4% of influent PFAS mass flow

Facility 3: 290% of influent PFAS mass flow

Concentration (ng/L)
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WWTP Aeration Basins: Foam Formation & PFAS

At 2 WWTPs:

* Collect wastewater entering
aeration basin and analyze for PFAS

» Collect foam, then analyze the re-
collapsed foam for PFAS

 Calculate PFAS enrichment factors

EF =L
Cw

(’-'o) AWWA “PFAS in Foam and Dewatering Streams
L WATERSCIENCE at Wastewater Treatment Plants’

Theory and Practice of Safe. Sustainable Water  C E. Schaefer, J.L. Hooper, L.E. Strom, K. Wu, J.L. Guelfo
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WWTP Aeration Basins: Foam Formation & PFAS

10000

PFAS EF

WWTP1
1000
100 « Substantial PFAS enrichment
525 1 - Upto 14,900 ng/L PFOS in foam
10 - Upto7040 ng/L 5:3 FTCA in foam
1
N S T S SR SR S < SN I o
F LRI LTI E « EF increases with increasing perfluorinated chain
ou0s length
WWTP 2
1000 >435 . g .
* No significant decreases in PFAS upstream and
100 downstream of aeration basins
- PFAAs in foams represent ~0.1% of PFAA mass

PFAS EF
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- Should increased foaming be considered?
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Integrated Treatment of Per- and Polyfluoroalkyl Substances in
Existing Wastewater Treatment Plants—Scoping the Potential of
Foam Partitioning

Sanne J. Smith,* Chantal Keane, Lutz Ahrens, and Karin Wiberg
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Potential Impact of Aerosols on PFAS in Aeration Basins
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PFAS Removal via Aerosolization of Domestic Wastewater
Bench-Scale Testing

Paper towel used to
capture aerosols
emitted

Needle valve

Mass flow
controller

Quick
connector

Sampling port

3-inch ID, Sched. 40, clear
polycarbonate column

Fine bubble
ceramic diffuser

Polycarbonate plate
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PFAS-spiked wastewater to 1,000 ng/L each
(PFAAs and 6:2 FTS)

20 to 60 mL/min flow
1-2 mm bubble size (fine bubble aeration)
Scaled aeration rate and geometry

Aerosol collection 2.5t0 10 cm above water
surface

PFAS sampled in bulk wastewater as a
function of time

Controls with no aerosol collection
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PFAS Removal Via Aerosolization: Bench-Scale Results

Contents lists available at ScienceDirect

Journal of Hazardous Materials

ELSEVIER journal homepage: www.elsevier.com/locate/jhazmat

Removal of per- and polyfluoroalkyl substances from wastewater via
aerosol capture

Dung Nguyen ™ , John Stults®, Julie Devon ", Eden Novak , Heather Lanza b Youn Choi®,

Linda Lee ©, Charles E. Schaefer ¢

No PFAS removal in controls (no aerosol
capture)

PFAS removal decreases with increasing
sorbent pad distance

PFAS removal increases with increasing
aeration rate

Collected aerosol volume <1% of water
volume

Biotransformation of 6:2 FTS observed

PFAS removal efficacy (%)

100%
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50%
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PFHxA 6:2 FTS PFHxS

PFOA

PFOS
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Field Testing: PFAS Removal in Aeration Basin via

Aerosol/Froth Capture (proof of concept)
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Near surface (2-inch) skimmer Garrett Screen Flux Meter
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Field Results (Preliminary): PFOS

PFOS (ng/L) Enrichment
Factor

Bulk wastewater 27 -
Skimmer 47 1.7
Garrett Screen 1,100 411
Stable Foam 27,000 1,000

Preliminary results suggest that near-surface
capture of froth/aerosols in aeration basins could
result in substantial removal of long-chained PFAS

PFOS Flux (ng/min/ft?)
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Final Thoughts

* PFAS accumulation in foams, aerosols, and dewatering streams may serve as
potential means to ultimately mitigate PFAS discharges from WWTPS

- ultimately, consider destructive technologies for these concentrated low-volume streams

* Improved insight on PFAS fate, distribution, and transformation in WWTPs is
needed

* Importance of total PFAS fluorine balance
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Thank You!

Charles Schaefer (schaeferce@cdmsmith.com)
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