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• Highlight importance of precursors in WWTPs

• PFAS accumulation in solids dewatering streams

• Understand impacts of aeration on PFAS fate in WWTPs
- PFAS accumulation in foams
- PFAS in aerosols

Objectives
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Background
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• PFAS present in nearly all domestic WWTPs

• Typical WWTP processes generally do little 
to remove PFAS

• Processes that concentrate/transform PFAS 
may be important

- PFAS accumulation in foam
- PFAS accumulation in biosolids
- PFAS precursor transformation during digestion

Schwichtenberg et al., ES&T, 2020



Precursors are Prevalent in WWTP Aqueous Flows
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• ~66% of PFAS semi-quantified precursors in influent
• ~51% of PFAS semi-quantified precursors in effluent



Precursors in Finished Biosolids
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• Biosolids from 7 WWTPs
• Various processing and final solids forms

Precursors

Sulfonates Carboxylates

Schaefer et al., Water Research, 2022

(DiPAPs)

PFAS analysis: Linda Lee - Purdue



PFAS Enrichment in Solids Dewatering Streams
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Secondary 
Clarifiers

Sludge
Dewatering
(gravity belt)

Thickened waste activated sludge

Water recycled
upstream

Anaerobic 
Digestion

Sludge Dewatering
(centrifuge)

Biosolids

Water recycled
upstream

Digested 
solids

Facility 1

Facility 2
Facility 3

3 WWTPs sampled:

Compare PFAS concentrations and mass flows in recycled dewater stream to WWTP influents



PFAS Enrichment in Solids Dewatering Streams
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• For facilities 2 and 3, PFAS in dewatering 
streams primarily FTCAs (diPAP transformation 
product)

• diPAPs in facility 3 biosolids 
5-times greater than in facility 2

downstream of 
anaerobic digestors

Facility 1 Facility 2 Facility 3



Dewatering Contribution: PFAS Mass Flows [g/day] 
(Target Analytes Only) 
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Facility 1: 0.1% of influent PFAS mass flow 

Facility 2: 4.4% of influent PFAS mass flow 

Facility 3: 290% of influent PFAS mass flow 

Facility 3

from Schaefer et al., AWWA Water Science, 2023



WWTP Aeration Basins: Foam Formation & PFAS
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At 2 WWTPs:

• Collect wastewater entering 
aeration basin and analyze for PFAS

• Collect foam, then analyze the re-
collapsed foam for PFAS

• Calculate PFAS enrichment factors 
஼೑

஼ೢ

“PFAS in Foam and Dewatering Streams 
at Wastewater Treatment Plants”

C.E. Schaefer, J.L. Hooper, L.E. Strom, K. Wu, J.L. Guelfo



WWTP Aeration Basins: Foam Formation & PFAS
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• Substantial PFAS enrichment
- Up to 14,900 ng/L PFOS in foam
- Up to 7,040 ng/L 5:3 FTCA in foam

• EF increases with increasing perfluorinated chain 
length

• No significant decreases in PFAS upstream and 
downstream of aeration basins

- PFAAs in foams represent ~0.1% of PFAA mass
- Should increased foaming be considered?

WWTP 1

WWTP 2
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• Recent study looking at 10 European 
and Australian WWTPs showed similar 
results

• Large EF range: much to still learn 
about conditions impacting impact EFs



Potential Impact of Aerosols on PFAS in Aeration Basins
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PFAS Removal via Aerosolization of Domestic Wastewater
Bench-Scale Testing
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• PFAS-spiked wastewater to 1,000 ng/L each 
(PFAAs and 6:2 FTS)

• 20 to 60 mL/min flow 

• 1-2 mm bubble size (fine bubble aeration)

• Scaled aeration rate and geometry

• Aerosol collection 2.5 to 10 cm above water 
surface 

• PFAS sampled in bulk wastewater as a 
function of time

• Controls with no aerosol collection



PFAS Removal Via Aerosolization: Bench-Scale Results
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• No PFAS removal in controls (no aerosol 
capture)

• PFAS removal decreases with increasing 
sorbent pad distance

• PFAS removal increases with increasing 
aeration rate

• Collected aerosol volume <1% of water 
volume

• Biotransformation of 6:2 FTS observed



Field Testing: PFAS Removal in Aeration Basin via 
Aerosol/Froth Capture (proof of concept)
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Near surface (2-inch) skimmer Garrett Screen Flux Meter
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Field Results (Preliminary): PFOS
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Enrichment 
Factor

PFOS (ng/L)Sample

-27Bulk wastewater
1.747Skimmer
411,100Garrett Screen

1,00027,000Stable Foam
Flux Meter

60% PFOS removal (flux normalized)

Preliminary results suggest that near-surface 
capture of froth/aerosols in aeration basins could 

result in substantial removal of long-chained PFAS



Final Thoughts
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• PFAS accumulation in foams, aerosols, and dewatering streams may serve as 
potential means to ultimately mitigate PFAS discharges from WWTPS

- ultimately, consider destructive technologies for these concentrated low-volume streams

• Improved insight on PFAS fate, distribution, and transformation in WWTPs is 
needed

• Importance of total PFAS fluorine balance



Thank You!
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Charles Schaefer (schaeferce@cdmsmith.com)


