Sheboygan Regional WWTF's Biosolids Dewatering & Drying Process Improvements

2016 CSWEA Operations Focus Seminar May 18, 2016

Sheboygan Regional WWTF

- 7 Communities, Western Shore of Lake Michigan
- Population 68,000
- 18.4 MGD Average, 56.8 MGD Max
- 10 MGD Average Daily Flow
- Activated Sludge with Biological P Removal and Backup Ferric Chloride Addition
- Anaerobic Co-Digestion, Biogas
 Recovery for Combined Heat & Power
- Liquid Storage of AD Biosolids and Biosolids Drying & Storage
- \$4.7 Million O&M Budget
- 2013 ACEC Engineering Excellence Grand Award - Net Zero Energy

Biogas to Energy

2005

Energy conservation initiatives & Co-digestion implemented

2006

Co-digestion program increased biogas

2012

Purchased biogas
conditioning equipment and
turbines from Alliant Energy City recoups all cost savings
from biogas to energy
systems

2006

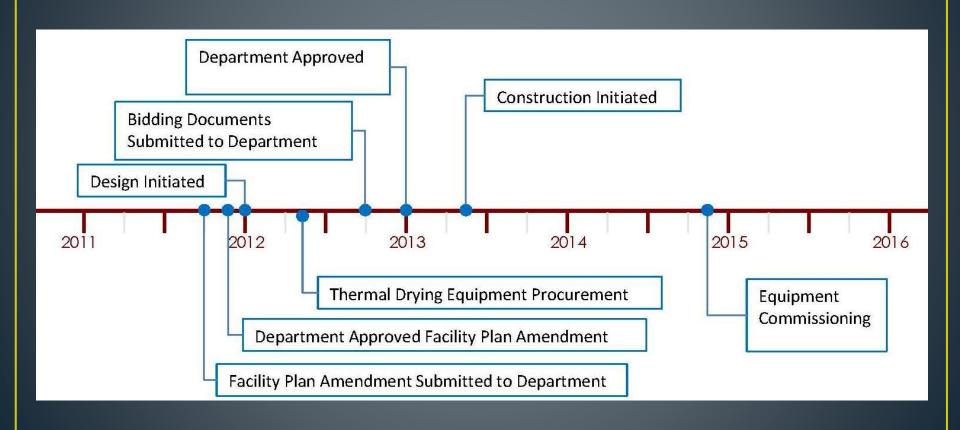
Partnered with Alliant Energy installed biogas conditioning and
turbines;
300 kW, 1MMBtu/hour heat

2010

Installed additional biogas conditioning and turbines;
400 kW,
1.4MMBtu/hour heat

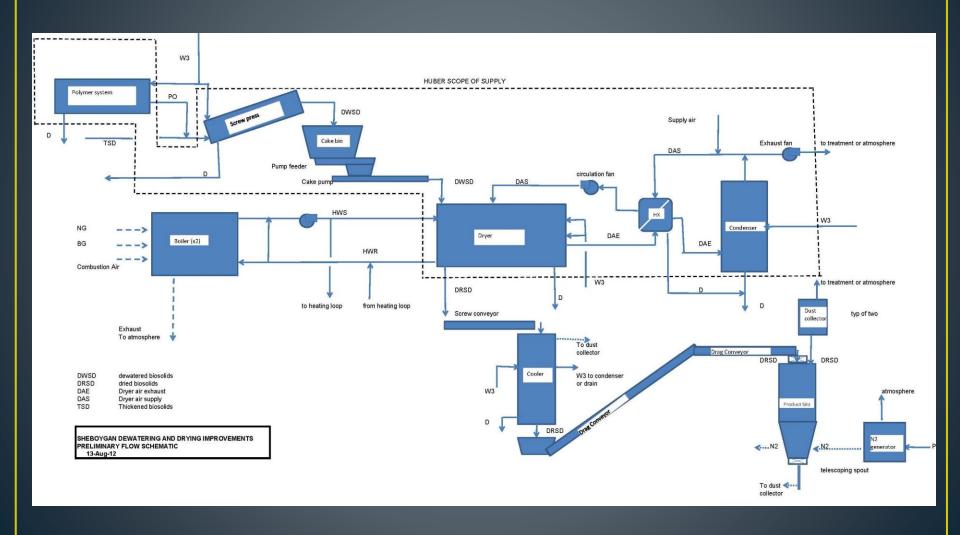
10 Years of HSW & Energy Program

- Process 60,000 gpd High Strength Waste
- Biogas Produced: 500,000 cu ft/day
- Biogas Quality: 53-63% Methane
- Equipment Installed: 700kW Electrical Generation
- Electrical Energy Produced: 5,000,000 kWh Annually
- Thermal Energy Produced: >100,000 Therms Annually
- Energy Savings: >\$450,000 Annually; ~80% Electrical & Heat Needs
- Significant Capital Improvements Required
- Increased Biosolids


Annual Operating Costs Energy + Biosolids

Biosolids Storage Requirements

- NR 204 Requires 180 Day Biosolids Storage
- Increase in Biosolids Production Attributable to HSW
- 10.08 MG Required; 5.96 MG Available
- Alternatives Considered to Expand Biosolids Storage Capacity
 - Minimal Additional Liquid Storage & Eliminate HSW Receiving Program
 - Large Scale Liquid Storage
 - Liquid Storage & Drying


Biosolids Dewatering & Drying Improvements Project Timeline

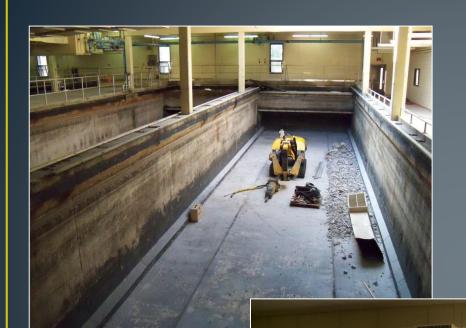
Biosolids Storage Option: Drying

- N-E-W Paradigm
 - Nutrient Recovery
 - Class A, EQ Product
 - Energy Independence
 - Utilize Excess Biogas & Waste Heat
 - Water Reuse
 - Utilize Final Effluent for Process Water
- Reuse Existing Infrastructure
 - Utilize & Rehab/Repurpose Existing Building

Biosolids Dewatering & Drying Improvements Flow Schematic

Biosolids Process Improvements

- Dewatering & Drying: Huber Screw Press & Huber Medium Temperature Belt Dryer
- Dryer Utilizes Excess Biogas & Waste Heat from CHP
- Class A, EQ Product
- Significant Cost Savings (Drying vs Hauling Liquid)


Dewatering & Drying Design Criteria

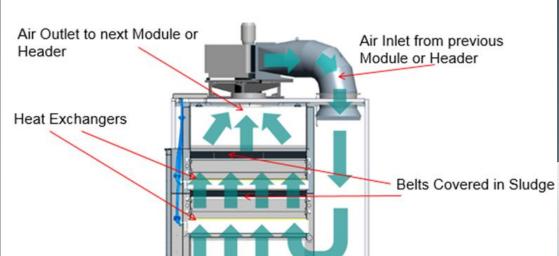
Parameter	Design
Dewatered Sludge Content	22-24% TS
Sludge Amount	11,904 ton/yr
Operation Time	6,000 hr/yr
Sludge Throughput	3968 lb/hr (22% TS)
Water Evaporation	3000 lb H ₂ O/hr
Dried Biosolids Solid Content	90% TS
Dried Biosolids Produced	~2600 tons/yr (dry wt)
Heat Transfer Medium	194 deg F H ₂ O @ 220 gpm

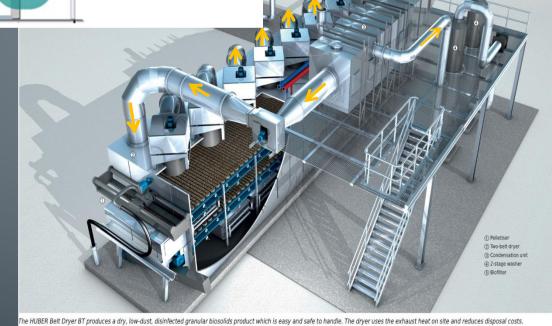
Biosolids Dewatering & Drying Improvements Project Costs

- Huber Belt Dryer BT18 = \$2.5 Million
- Huber Q800 Screw Press = \$0.324 Million
- Total Project Cost = \$8.0 Million
- Clean Water Fund Program Loan
- Anticipated Increase in O&M Costs = \$60,000/year
- Projected Savings (Hauling Costs) = \$100,000 200,000/year
- Huber Designed Solids Dewatering & Drying Systems & Associated Equipment
- Donohue & Associates, Inc. Designed Balance of Plant to Support Dewatering & Drying Systems
- General Contractor Assigned Thermal Drying Equipment Procurement Contract
 - Responsible for All Equipment Procurement & Installation; All Warranties

Construction: Repurposing Existing Building

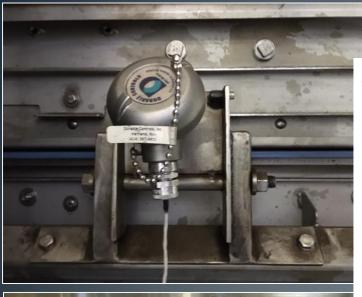
Construction: Repurposing Existing Building


Huber Belt Dryer: Modular Installation

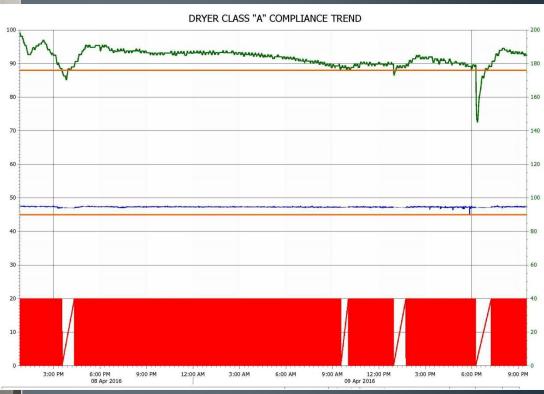


Huber Belt Dryer: Design

- Air Flow
 - Helical Flow Pattern
 - From Rear
- Negative Pressure
- Heat Reclaimed
- Moisture Condensed


Huber Belt Dryer: Design

Extruder with Rotating Knife



Class A Certification

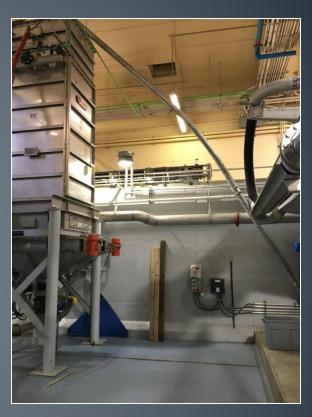
Nutrient Recovery: Class A, EQ Biosolids

Operational Challenges: Dewatering

High Polymer Consumption

Inconsistent Operation

Operational Challenges: Condenser


- ElementalSulfur Deposits
- Pilot WetScrubberCondenser

Lessons Learned

- Cooler Not Required
- Level Sensors Proper Selection
- Dewatering Polymer Criteria
- Sludge Cake Hopper Design
- PATIENCE & PERSERVERANCE

Continuing to Reclaim Nutrients

Sharon Thieszen Superintendent, Sheboygan Regional WWTF sharon.thieszen@sheobyganwwtp.com (920) 459-3964