

Central States Water Environment Association

RESOURCE RECOVERY AND ENERGY (R₂E) COMMITTEE OF THE FUTURE

Overview

- R₂E Introduction
- Context: Sustainability & Resiliency
- Organizations and R₂E
- Technology & R₂E
- Funding for R₂E projects
- Case Studies
- Conclusions

CSWEA Vision Statement

"To provide a Water Environment Federation (WEF) organization (Illinois, Minnesota, Wisconsin) offering multiple opportunities for the exchange of water quality knowledge and experiences among its members and the public and to foster a greater awareness of water quality achievements and challenges"

R₂E Vision Statement

"To increase communication and provide tools and resources for all interested parties that are enhancing their nutrient recovery and energy related opportunities"

Resource Recovery and Energy (R₂E) – The Committee of the Future

- Resource for WWTF's
 - MN Learning Network
- Sustainable technology
- Planning for the future
- For operators, supervisors, and others
 - Large and Small Utilities
- Opportunities to get involved
- Conference on the Environment
 - Minnesota Utility Registration
 - Flexible presentation schedules

A Changing Wastewater Environment

- Treatment changes over the years
- Crumbling, aged infrastructure
- Lack of available funds for upgrades
- Other socio-environmental factors impacting wastewater treatment
- The impact of these factors on wastewater treatment

A Brief History of Wastewater Treatment in the US

1776 - 1870's

Septic tanks, cess pools, and surface waters

1870's - 1930's

Sewerage introduced, mostly untreated

1930's - 1970's

"Treatment" consisted of settling ponds and lagoons

1970's - Present

- Clean Water Act passed, Federal funding made available
- Many plants created/updated existing treatment facilities

Present day

- American Society of Civil Engineers
 (ASCE): Wastewater Infrastructure at a D+
- EPA: ~ 23K- 75K Sanitary Sewer Overflows (SSOs) annually
- No major federal funding for WWTF's since CWA
- Estimated costs to update these facilities within next 20 years is > \$1 Trillion

Future Expected Challenges

- Population
 - Rising in urban areas, falling in some rural areas
- Funding
- Utility Rates
- Regulations
- Environmental factors (for MN)
 - flooding, seasonal difference, changing precipitation

Sustainability, Resiliency, and the Future

How do we face these challenges?

- Sustainability
 - Economy, Ecology, Community
 - "Utopian" vision not viable
- Resiliency
 - Ability to bounce back
 - Anticipating future setbacks
 - Collaborating with others
- Sustainability and Resiliency
 - Planning for challenges promotes sustainability

Sustainability through Resiliency

The how:

- Preparation and planning
- Collaboration and Consensus building
- Multiple stakeholders
- Innovation
- Learning networks
- Grit and hard work

R₂E, Sustainability, and Resiliency

- R₂E is a resource for the WW industry
- Collaborate with municipalities, engineering firms, regulatory agencies, communities
- Provide assistance and ideas for all interested WWTF's
- A learning network that builds trust among multiple stakeholders

Organizations

- WEF
 - Water Environment Federation
- WERF
 - Water Environment and Reuse Foundation
- NACWA
 - National Association of Clean Water Agencies
- DOE
 - Department of Energy

Water Environment Federation

WEF

- Est. 1928; over 33,000 members
- Connects professional, encourages innovation, provides education
- Resources
 - Resource Recovery Roadmaps
 - Biosolids & National Biosolids
 Partnership
 - Energy
 - Nutrients
 - Water Reuse

Water Environment Research Foundation

WERF

- Non-profit organization → WEF
- Research portfolio: >\$200 Million
 - Applied research in water and the environment
 - Accelerating innovation and the adoption of technology
 - Transfer of knowledge
 - Setting industry research agendas

National Association of Clean Water Agencies

NACWA

- Created after CWA
- Advocated for EPA programs
- Local government oriented
 - WWTF's
 - Collection Systems
 - Stormwater Systems
- Water Resources Utility of the Future – Blueprint for Action
 - Also through AWWA

Department of Energy – Better Buildings

DOE

- Wastewater Treatment Plant -> Water Resource Recovery Facility
- SWIFt Sustainable Wastewater Infrastructure of the Future
 - Improve energy efficiency
 - Save money
 - Increase competitiveness
- 3 year initiative
 - Federal, state, regional, local
 - Catalyze adoption of sustainable design
 - 30% energy reduction goal
 - Encourage resource recovery

R₂E, Affiliated Organizations, and The Future

- Learning networks make us a stronger industry
- Collaboration within water quality community leads to innovation
- Multiple stakeholders improves resilience
- R₂E can help connect professionals

R2E Technology

Resource Recovery

- Biosolids
- Phosphorus

Energy

- Solar
- Wind
- Biogas

Resource Recovery - Biosolids

Land application

- Beneficial to crops/agricultural community
- Can utilize biogas from digesters
- Simple, straightforward process

Waste to energy

- Incinerate biosolids for energy
- Digesters not necessary
- More complex than land application
- Ash (potentially) used as fertilizer

Fuel Value/Nutrient Value of Biosolids

Fuel Value – Typical Sludge

- Wastewater sludge
 8,000 BTU / lb dry
- Wood
 8,700 BTU / lb dry
- Low grade Coal
 8,000 BTU / lb dry

Nutrient Value – Typical Sludge

Wastewater Sludge

$$N = 3\%$$

$$P = 2\%$$

$$K = 0.3\%$$

Agricultural Fertilizer

$$N = 5\%$$

$$P = 10\%$$

$$K = 0.3\%$$

Phosphorus/Struvite Recovery

Recovery and Reuse

- Prevent struvite buildup
- Reduce amount of Phosphorus in effluent
- Treat wastewater
- Potential source of income

Phosphorus Removal & Struvite Recovery

23

R₂E, Resource Recovery, and the Future

- Opportunities for stakeholder collaboration
 - Farmers, City, Citizens
- Valuable product used for energy or fertilizer
- Expand purpose of WWTF's
- R₂E can provide information, resources, and help network

Energy in Wastewater

Energy – Bio-Gas Generators

- Already producing methane
 - Internal Combustion Engines
 - Compressed Natural Gas (CNG)
- High Strength Waste
- Heat Recovery

Energy - Solar

- Unique opportunities for WWTF's
- Massive energy consumers
- Space available for solar
- Advancements in solar:
 - "Perovskite" mineral
 - Nanotubes
 - Battery technology

Energy - Wind

- Types of Turbines
 - Horizontal
 - Vertical
 - Ducted
- Space for Wind Farms

Energy - Wind

- Types of Turbines
 - Horizontal
 - Vertical
 - Ducted
- Space for Wind Farms

R₂E, Energy Production, and the Future

- Reduce reliance on power grid
 - "Behind the Meter"
- Offset other costs
- Promote sustainable development and reduce CO2
- Expand purpose of WWTF's
- R₂E can provide information about options to produce energy onsite

Funding

All of this sounds great, but how do we pay for it?

- Public Facilities Authority
- Point Source Implementation
 Grant
- Energy Savings Company
- Green Project Reserves

Public Facilities Authority

PFA

- Community financing/technical assistance for public infrastructure
- Protect public health and environment, promote economic growth
- 3 revolving loan funds provide Money for:
 - Drinking Water
 - Clean Water
 - Transportation

PFA – Point Source Implementation Grant

PSIG

- Designed for WWTF's
- Must be on "Project Priority List"
- Administered annually
 - Help meet TMDL plans
 - Reduce Phosphorus to <1mg/l
 - Reduce total nitrogen <10 mg/l
 - Meet/exceed MPCA requirements

ESCO Funding

Energy Savings Company (ESCO)

- Third party pays for project

 energy savings reimburse ESCO
 - Guaranteed by ESCO
 - Varying payoff times
- Ideal for large municipal projects
 - Long-term property owner
 - Large consumer of energy

Green Project Reserves funding

- Administered by EPA/MPCA
- Low interest loans for municipalities
- Through Clean Water Revolving Fund
- For green infrastructure, water, or energy efficiency
- Up to \$500,000; not as many requirements as other grants

R₂E, Funding, and the Future

- R₂E projects compliment WWT
- R₂E projects can open new doors
- R₂E can increase lifetime of WWTF's
- Matching funds
- R₂E committee is resource for funding and connecting professionals

Case Studies

- MCES Blue Lake
 - Fertilizer
 - Waste to Energy
- City of Rochester
 - Waste to Energy
- City of St. Cloud
 - Biosolids
 - Energy
 - Phosphorus Recovery

MCES Blue Lake WWTP

Anaerobic Digesters and NEFCO

Biogas:

\$500,000/yr natural gas savings 4,600 tons CO2 per year avoided \$150,000 energy rebate

Fertilizer:

23 dry tons per day of digested dewatered sludge is dried to 8000 tons per year of land-applied pellets

Rochester Water Reclamation Plant

Combined Heat and Power System

\$230,000/yr electrical savings \$345,000/yr nat gas savings

Total=\$575,000

2,300 tons CO2 per year avoided

\$240,000 energy rebate

St. Cloud Resource Recovery **Facility**

Biofuel Recovery Project

\$400,000/yr energy savings

3,000 tons CO2 per year avoided

5,000,000

Kilowatt-Hours

R₂E, Case Studies, and the Future

- Communities with sustainable design
- Upgrades open new doors
- Facilities more resilient
- R₂E Committee has compiled these as a reference site for MN

Conclusions

- Many future challenges that R₂E is here to help with
- R₂E is a resource for WWTF's
- Several helpful affiliated organizations
- Technology of the future
- How to fund R₂E projects
- Minnesota examples
- Sustainable planning for the future will make the industry more resilient

Questions

45