Committee of the Future - R2E Wastewater Operations Conference

March 29-31, 2017

Marriott Northwest, Brooklyn Park, Minnesota

3 TAKE-A-WAYS TODAY

- Introduce the Resource Recovery and Energy Committee (R2E)
- Establish the untapped potential of harnessing energy from Wastewater
- Review current Minnesota Energy case studies

MN Section R2E Committee

Vision Statement

"To increase knowledge and awareness of resource recovery and energy technologies to inspire, change and to protect our natural resources for generations to come."

MN Section R2E Committee Members:

Chair Tracy Hodel - St. Cloud Vice Chair Patrick Haney - HDR Member Corey Bjornberg - Rochester

Member Kathy Crowson - SEH

Member Josh Gad - Mankato

Member Chris Harrington- HR Green

Member Samidha Junghare - WLSSD

Member Emma Larson-St. Cloud

Member David Quast - MCES

Member Patrick Shea - - St. Cloud

Member Jacqueline Strait -HR Green

Member Eric Miller - SEH

R2E Committee OBJECTIVES & GOALs

- ▶ 5 Year Strategic Plan
- > Align with WEF, WERF, DOE initiatives
- Resources & Tools
- Pilot Open Houses
- Training Workshop

National Resources

- WEF Roadmaps, Energy, Biosolids, Nutrients, Reuse
- ►WEF LIFT Toolbox
- NACWA Utility of the Future
- ► DOE Better Buildings

R2E Website

DOE- Better Buildings

Wastewater Treatment _____ Water Resource Recovery Facility

- ► Wastewater Accelerator Program
 - >3 year commitment
 - ► Reduce energy consumption by 30%

Biosolids – A Commodity

"WEF recognizes that biosolids, natural byproducts of the wastewater treatment process, are a renewable resource that are too valuable to waste in the context of growing needs for renewable energy and sustainability. WEF supports the highest and best use in accordance with local community standards that are economically and technologically feasible"

WEF Position Paper on Biosolids - Dec 2, 2011

Energy Embedded in Wastewater

Wastewater contains nearly five times the amount of energy needed for the wastewater treatment process — the majority in the untapped area of thermal energy.

Largest U.S. Treatment Facilities

Investing in the 100 largest wastewater facilities to become energy neutral could eliminate 17% of the wastewater industry's energy use.

Waste to Energy Projects - Minnesota

MCES - Metropolitan Wastewater Treatment Plant - St. Paul

180 MGD plant flow; 240 dry tons per day sludge produced

Sewage Sludge Incineration - Energy Recovery (Plant Heating)

Sewage Sludge Incineration - Energy Recovery (Turbine Generation)

MCES - Blue Lake Wastewater Treatment Plant - Shakopee

26 MGD plant flow; 23 dry tons per day sludge produced
Digestion - Energy Recovery (Plant Heating and Drying)

Rochester Water Reclamation Plant - Rochester

24 MGD plant flow; 23 dry tons per day sludge produced

Digestion - Energy Recovery (Plant Power and Heating)

Saint Cloud Wastewater Treatment Facility -

10 MGD plant flow;

Digestion - Energy Recovery (Plant Power and Heating)
Goal - Energy Neutral by 2020

Fuel value of Biomass and Nutrient value of biosolids In the USA - 8 million dry tons per year

Fuel Value -Typical Sludge

- Wastewater sludge
 8,000 BTU / lb dry
- Wood 8,700 BTU / lb dry
- Low grade Coal 8,000 BTU / lb dry

Nutrient Value - Typical Sludge

Wastewater Sludge

$$N = 3\%$$

$$P = 2\%$$

$$K = 0.3\%$$

Agricultural Fertilizer

$$N = 5\%$$

$$P = 10\%$$

$$K = 0.3\%$$

Beneficial Use of Biosolids

Waste to Heat Recovery

Land Application

MCES Metro WWTP

Steam Heating:

\$1,400,000/yr natural gas savings 21,200 tons CO2 per year avoided

\$592,000 energy rebate

Turbine Generator:

\$1,000,000/ year electrical savings 10,700 tons CO2 per year avoided

\$366,000 energy rebate

MCES Blue Lake WWTP

Anaerobic Digesters and NEFCO

Biogas:

\$500,000/yr natural gas savings 4,600 tons CO2 per year avoided \$150,000 energy rebate

Fertilizer:
23 dry tons per
day of digested
dewatered sludge
is dried to 8000
tons per year of
land-applied
pellets

Rochester Water Reclamation Plant

Combined
Heat and
Power
System

\$230,000/yr electrical savings \$345,000/yr nat gas savings

Total=\$575,000

2,300 tons CO2 per year avoided

\$240,000 energy rebate

St. Cloud Resource Recovery Facility

Biofuel Recovery Project

\$400,000/yr energy savings

3,000 tons CO2 per year avoided

SUSTAINABILITY EQUIVALENCIES

5,000,000 Kilowatt-Hours

519

Homes' Electricity (Use for one year)

3,749,644Pounds of Coal

10 MGD

QUESTIONS?

Jackie Strait, R2E Committee Member

jstrait@hrgreen.com

651-659-7743