

Agenda

- Biogas Potential
 - VS
 - COD
 - Carbohydrates, Lipids, Proteins
- Digester Capacity
 - Organic Loading Rate
 - Specific Energy Loading Rate

Co-Digestion Organic

Material

Biogas Potential – VS

- WEF MOP 8
 - VSLR = 0.12-0.16 lb/d-cf $(1.9-2.5 \text{ kg/m}^3-\text{d})$
 - Specific Digester Gas Yield = 13-18 cf/lb VSr (0.8-1.0 m³/kg VSr)
 - CH₄ fraction = 60-70%
 - Specific Methane Gas Yield = 7.8 12.6 cf / LB VSr (0.48 -0.7 m³/kg VSr)

Digestion Time (d)	VS destruction %
30	65.5
20	60.0
15	56.0

Metcalf & Eddy 4th Edition (2003)

Biogas Potential – VS

How to do you get VS and VSr values for co-digestion organic materials?

How to do you get Specific Digester Gas Yield and Digester Methane Fraction for co-digestion organic materials?

- Lab Test 550° muffle furnace
- Typically Empirical data

Waste Manag, 2010 Oct;30(10):1854-9. doi: 10.1016/j.wasman.2010.03.029. Epub 2010 Apr 18

Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: recovering a wasted methane potential and enhancing the biogas yield.

Martín-González L1, Colturato LF, Font X, Vicent T.

Author information

Abstract

Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is almed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSW under mesophilic conditions (37 degrees C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGWSC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5L continuous reactor. Biogas yield increased from 0.38+/-0.02 L g VS(feed)(-1) to 0.55+/-0.05 L g VS(feed)(-1) as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW.

Biogas Potential – COD

$$CH_4 + 2O_2 -> CO_2 + 2H_20$$

2 moles of O_2 /mole of CH_4 = 2 (32g O_2 /mole)/mole CH_4 = 64 g/mole CH_4

At standard conditions (0 deg and 1 atm) 1 mole $CH_4 = 22.414 L$

$$\frac{22.414 L}{mole CH_4} \times \frac{mole CH_4}{64 g} = \frac{0.35 L CH_4}{g COD}$$

Relationship holds for any type of anaerobically – digested material

Biogas Potential – COD

- Specific Methane Gas Yield = 5.61 cf/lb COD (0.35 L/g COD) at 0 deg C and 1 atm
 - Methane Energy Projection = 960 BTU/cf ft
 - Specific Energy Projection = 5,380 BTU/lb COD removed

$$\frac{5,380 \ BTU}{lb \ COD} \times \frac{cf \ CH_4}{960 \ BTU} = \frac{5.61 \ cf \ CH_4}{lb \ COD}$$

Biogas Potential – COD

- Conventional Sludge 2:1 TPS/TWAS 1.56 g COD/ g VSS
- Specific Methane Gas Yield = 5.61 cf/lb COD (0.35 L/g COD)

$$\frac{1.56 \ g \ COD}{g \ VSS} \times \frac{0.35 \ L \ CH4}{g \ COD} = \frac{0.546 \ L \ CH_4}{g \ VSS} = \frac{0.546 \ m^3 \ CH_4}{kg \ VSS}$$

WEF MOP 8 - Specific Methane Gas Yield = 0.48 - 0.7 m³/kg VSr

Biogas Potential – Carbohydrates, Protein, Lipids

Digester Gas Methane Fraction (Symons and Buswell , & McCarty)

$$C_n H_a O_b N_c + \left(n - \frac{a}{4} - \frac{b}{2} + \frac{7c}{4}\right) H_2 O \longrightarrow \left(\frac{n}{2} + \frac{a}{8} - \frac{b}{4} - \frac{3c}{8}\right) C H_4 + \left(\frac{n}{2} - \frac{a}{8} + \frac{b}{4} - \frac{5c}{8}\right) C O_2 + c N H_4 H C O_3$$

- Carbohydrates $(C_6H_{12}O_6)$ = approx. 50% methane
- Proteins ($C_4H_{6,1}O_{1,2}N$) = approx. 42% methane
- Lipids ($C_{18}H_{36}O_2$) = approx. 72% methane

Biogas Potential – Carbohydrates, Protein, Lipids

Digester Gas Methane Fraction (Symons and Buswell, & McCarty)

$$C_n H_a O_b N_c + \left(n - \frac{a}{4} - \frac{b}{2} + \frac{7c}{4}\right) H_2 O \longrightarrow \left(\frac{n}{2} + \frac{a}{8} - \frac{b}{4} - \frac{3c}{8}\right) C H_4 \left(\frac{n}{2} - \frac{a}{8} + \frac{b}{4} - \frac{5c}{8}\right) C O_2 + c N H_4 H C O_3$$

Doesn't account for biomass yield or degradability

Substrate	Biomass Yield (g cells/g COD consumed)
Carbohydrates	0.35
Protein	0.20
Lipids Speece, R.E. (2008)	0.038

Co-Digestion Acclimation Period

Digester Capacity - Organic Loading Rate

Organic Loading Rate

Mass of VS added per day per unit volume

0.12-0.16 lb VS/d-cf $(1.9-2.5 \text{ kg/m}^3-d)$

Metcalf & Eddy 4th Edition (2003)

Digester Capacity - Specific Energy Loading Rate

SELR = energy loading/ reactor biomass (gCOD/d per gVS in digester)

David L Parry (2013)

Example FOG – Loading Rate

David L Parry (2013)

Questions from the Audience?

Bibliography

Metcalf & Eddy, Inc. Wastewater Engineering: Treatment and Reuse. Boston: McGraw-Hill, 2003

WEF/ASCE. Design of Water Resource Recovery Facilities, 6th ed. WEF Manual of Practice No. 8. McGraw-Hill, 2018

Speece, R.E. Anaerobic Biotechnology and Odor/Corrosion Control for Municipalities and Industries. Archae Press, 2008

Rittmann, B.E. and P.L. McCarty. Environmental Biotechnology: Principles and Applications. McGraw-Hill, 2001

Symons, G.E. and A.M. Buswell. "The Methane Fermentation of Carbohydrates". Journal of the American Chemical Society, 55 (5), 2028-2036 (1933).

Parry, David L. "Codigestion Research Builds Facility Operator Confidence." BioCycle Energy, May 2013.