

Oxidation of Municipal Sludge using Chlorine Dioxide (ClO2)

- Started ~24 years ago with the idea to disinfect wastewater effluent
 - (before hypochlorite caught on and everybody was still using gaseous chlorine)
 - Testing was very successful at meeting fecal coliform reductions while still being able to pass acute toxicity testing for marine surface water discharge
- Next logical step was to abandon the research and add biosolids disinfection...
 - Chlorine dioxide really does a number on municipal sludge...
 - but you can't kill Ascaris eggs, therefore no Class A biosolids
 - We can generate nitrous acid in-situ to finish the job!
 - · Everybody wants Class AA biosolids, few people want to pay for it...
- Class B is easy!
 - Is the beneficial use of biosolids going away because of PFAS concerns???

Chlorine dioxide does lots of really cool stuff...

Class B Biosolids in 10 minutes

- Plug-flow Class B biosolids disinfection process that greatly reduces odors from biosolids
- National EPA approved PSRP Equivalent Process (2015)
- Highly scalable process 55 gpm to 270 gpm WAS feed (0.5 MGD 20 MGD)
- Digestion not required (secondary sludge feed)
- Small footprint
- Automated process control, remote monitoring & data logging capabilities
- What does it do?
 - Disinfects to Class B Standards in 10 minutes compared to 28-30 days in digesters
 - Volumetric and/or solids-based addition of Chlorine Dioxide (ClO₂) to WAS
 - Combination of Sulfuric Acid (H₂SO₄)with Sodium Chlorite (NaClO₂) to form Chlorine Dioxide.
 - Meets VAR (SOUR method Option 4)
 - Reduces energy consumption
 - Enhances dewatering decreases polymer consumption and increase cake solids
 - Reduces nutrient loading (N and P) return to the plant
 - · Reduces odors normally associated with biosolids processing
 - ClO2 is a strong oxidant with a good combination of selectivity and reactivity
 - Performs extremely well as a disinfectant for municipal biosolids.
 - Effective odor control against sulfides, phenols and mercaptans.
 - The ClO2 is reduced to chlorite (ClO2-) as an intermediary step, and then reacts further and reduces to chloride (Cl-)
 - No chlorinated organics, THMs or HAAs are formed.

Class B Disinfection is Good...

- What else does it do?
 - Provides a means to preserve the energy content of biosolids
 - Changes the charge of the sludge and enhances dewaterability, resulting in 'better' cake (finer, smaller particle size with no odor)
 - Increases the conductivity of biosolids while still in liquid form
 - Kills cell... which can result in ???
- What doesn't it do?
 - Provide stabilization in the traditional sense

Standard CleanB® Components - Modular Design Package

Simple, scalable, modular low cost Class B alternative

CleanB® Process Integration

Typical Process Flows

CleanB® Process Integration

CleanB Process Flow - 1 (typical)

CleanB® Enhances Dewatering, Lowering T&D Costs

Eden, NC Demonstration. Dewatered using belt filter press (BFP) and transferred to pad via auger system. Polymer was continually dialed down after treatment to achieve >26%TS cake.

CleanB® Case Study - Ft. Pierce

Process Stream	Stream #	Total Solids [%]	Flow [gpd]	Wet Solids [lbs/day]	Dry Solids [lbs/day]	Total Nitrogen [lbs/day]	Total Phosphorous [lbs/day]
Thickener In	1	0.80	88,091	734,678	5,892	410	109
Thickener Filtrate	2	0.06	75,588	630,404	366	182	47
Thickener Out	3	5.30	12,503	104,273	5,526	228	62
Dewatered Filtrate	4	0.41	8,927	74,450	307	122	39
Dewatered Biosolids	5	17.50	3,576	29,823	5,219	106	23

Process Stream	Stream #	Total Solids [%]	Flow [gpd]	Wet Solids [lbs/day]	Dry Solids [lbs/day]	Total Nitrogen [lbs/day]	Total Phosphorous [lbs/day]
WAS in	1	0.62	104,706	873,244	5,405	322	160
CleanB Treated	2	0.62	104,706	873,244	5,405	322	160
Dewatered Filtrate	3	0.02	101,886	849,733	186	23	27
Dewatered Biosolids	4	22.20	2,819	23,511	5,219	299	133

Fort Pierce, FL Utility Authority

Conventional Activated Sludge Plant

Permitted at 9 MGD

AADF 4.4 MGD

CleanB® Process installed 3rd Quarter 2014

Verified Performance:

- 1) Operating cost savings ~\$240k/year
- 2) %TS on dewatered biosolids improved by 21% (52 less Truckloads/year)
- 3) Total polymer consumption reduced by 34% (reduction of 26.8 lbs/DT)
- 4) Solids return via filtrate reduced by 70% (76 tons/yr.)
- 5) Total Nitrogen return via filtrate reduced 92% (45 tons/yr.)
- 6) Total Phosphorous return via filtrate reduced 66% (9 tons/yr.)
- 7) A \$57k/year expense eliminated from the aerobic holding tank blowers being taken off-line.
- 8) Energy/GHG emission savings equates to 50.8 cars per year or 86.4 tons of waste sent to the landfill.

Standard Neutralizer® Components

Neutralizer® Process Steps

- 1. Waste activated sludge is thickened using disk thickeners. A polymer is added to help thickening, raising the solid concentration to 4 percent. Once the tank receives 5,000 gallons of thickened sludge, ferric sulfate is added to chemically precipitate phosphorus.
- 2. The sludge is pumped to a skid where it is injected with chlorine dioxide created by combining sodium chlorite and sulfuric acid through a highly controlled, patented process.
- 3. The sludge is moved to process tanks where it is allowed 1-hour contact time with the chlorine dioxide. The sulfuric acid is added to make the mixture more acidic.
- 4. Sodium nitrite is added for to the process tank. The low pH and high ORP converts the sodium nitrite to nitrous acid. The waste activated sludge then has a contact time of 6 hours with the nitrous acid.
- **5. Sodium** hydroxide is added to bring the pH to a desired level.
- 6. Water is removed by traditional methods, such as a centrifuge or a belt press. The final product is a Class A material with an earthy smell that can be registered as a commercial grade fertilizer.

Neutralizer® system is batch process utilizing 5 chemicals for Class A/EQ disinfection and sludge conditioning. Solids content is limited to 4% per PFRP equivalent requirements.

Neutralizer® Process Installation

ClO₂ Chemistry Benefits

ClO₂ Benefits

- Chlorine dioxide is not another form of chlorine; it does not chlorinate
 - No chlorinated organics, THMs or HAAs are formed
 - Does not react with ammonia to form chloramines
- Lowest Oxidation-Reduction Potential (highest oxidation capacity among oxidizers)
 - Oxidation state: 5; Chlorine, Ozone, Peroxide: 2
 - 1 ppm ClO2 is as effective as 100 ppm chlorine
- ClO₂ is extremely selective
 - Minimally affected by organic contamination
 - Chlorine, peroxide and hypochlorite and ozone are indiscriminate oxidants

ClO₂ Chemistry Benefits (cont'd)

ClO₂ Benefits

- Highly soluble in water
- Unlike chlorine and hypochlorite, it does not react with water to produce hypochlorous acid
- Performs extremely well as a disinfectant for municipal water biosolids
- Effective at broad pH ranges (2-10 pH)
- Effective odor control against sulfides, phenols and mercaptans
- Synergistic disinfection with chlorine
 - Very similar to drinking water disinfection, or the use of ClO₂ as a 'pre-oxidant'

Where's the Cool Stuff?

Energy, dewaterability, conductivity

- BTU Value 6800-8000+ BTU/lb... with no odors
- Drier cake therefore less water to evaporate, also TGA/DSC test demonstrated that water leaves earlier and faster, equating to a 25% energy savings with sludge drying
- Conductivity must be useful for something...
 - Electro-kinetic dewatering

Combinations

- Prior to Aerobic Digestion Classic stabilization in less time (5 day SOUR, 10-14 day VSR
- Prior to Anaerobic Digestion; a 3-month bench-scale study showed a 30% increase in methane production from secondary sludge

Thank You!

Questions?

Dr. Fred Mussari

BCR Environmental

fmussari@bcrinc.com

Mike Norris – Product Manager – Advanced Oxidation – mnorris@bcrinc.com – (239) 404-7838

Steve McAdams – Product Manager – Thermal – smcadams@bcrinc.com – (925) 260-3460

N. Charan – Product Manager - Thermal – ncharan@bcrinc.com – (321) 666-4349

Keith Williams – VP Sales and Marketing - kwilliams@bcrinc.com – (512) 632-8158

Rick Treleven – Regional Sales Manager – Central Region – rtreleven@bcrinc.com – (262) 483-1363

Robert "Bob" Stark – Regional Sales Manager – West Region – rstark@bcrinc.com – (713) 725-2891

