PFAS: THE MUNICIPAL WASTEWATER PERSPECTIVE

VANESSA WISHART

MUNICIPAL ENVIRONMENTAL GROUP - WASTEWATER DIVISION

BRIEF BACKGROUND

- PFAS stands for:
 - perfluoroalkyl substances, and
 - polyfluoroalkyl substances
- Large family of compounds containing carbon-fluorine bonds
- Man-made; over 4,000
- Wide variety of physical and chemical properties
 - Gases, liquids, surfactants, solid material

BRIEF BACKGROUND

- Highly Useful
 - Repel oil and water
 - Reduce surface tension by concentrating at the liquid-air interface
 - Temperature resistance
 - Friction reduction

THEY ARE EVERYWHERE!

- PAPER AND PACKAGING
- CLOTHING AND CARPETS
- OUTDOOR TEXTILES AND SPORTING EQUIPMENT
- SKI AND SNOWBOARD WAXES
- NON-STICK COOKWARE (TEFLON)
- CLEANING AGENTS AND FABRIC SOFTENERS
- POLISHES AND WAXES

- PESTICIDES AND HERBICIDES
- HYDRAULIC FLUIDS
- WINDSHIELD WIPERS
- PAINTS, VARNISHES, DYES AND INKS
- ADHESIVES
- MEDICAL PRODUCTS
- PERSONAL CARE PRODUCTS
- FIREFIGHTING FOAM

Table 2-1. Discover	y and manufacturing	history of se	lect PFAS
= =	,		

PFAS ¹	Development Time Period								
	1930s	1940s	1950s	1960s	1970s	1980s	1990s	2000s	
PTFE	Invented	Non-Stick Coatings			Waterproof Fabrics				
PFOS		Initial Production	Stain & Water Resistant Products	Firefighting foam				U.S. Reduction of PFOS, PFOA, PFNA (and other select PFAS ²)	
PFOA		Initial Production		otective patings					
PFNA					Initial Production	Architectural Resins			
Fluoro- telomers					Initial Production	Firefighting Foams		Predominant form of firefighting foam	
Dominant Process ³		Electrochemical Fluorination (ECF)					Fluoro- telomerization (shorter chain ECF)		
Pre-Invention of Chemistry /			Initial Chemical Synthesis / Production		Commercial Products Introduced and Used				

Notes:

- 1. This table includes fluoropolymers, PFAAs, and fluorotelomers. PTFE (polytetrafluoroethylene) is a fluoropolymer. PFOS, PFOA, and PFNA (perfluorononanoic acid) are PFAAs.
- 2. Refer to Section 3.4.
- 3. The dominant manufacturing process is shown in the table; note, however, that ECF and fluorotelomerization have both been, and continue to be, used for the production of select PFAS.

Sources: Prevedouros et al. 2006; Concawe 2016; Chemours 2017; Gore-Tex 2017; US Naval Research Academy 2017

Source: Interstate
Technology and
Regulatory Council
(ITRC), 2017,
PFAS Fact Sheet,
History and Use of
Per- and
Polyfluoroalkyl
Substances (PFAS).

CONTEXT

- Distinction between sources and receivers
 - POTWs are not a source of PFAS
- Distinction between concentrations in different media
 - No standards applicable to wastewater or biosolids
- Spills v. Background concentrations
 - Ex. background concentrations found in soils in the National Forests range from 0.1 to 1.8 ppb

POLLUTANT MINIMIZATION PROGRAMS

- Limited treatment options at a POTW
 - PFAS is difficult and costly to treat
 - Treatment leaves a problematic media for disposal
- Pollutant minimization from industrial dischargers is likely more effective and less costly
 - Directly address sources of PFAS

- DNR has begun the rulemaking process for a number of standards relating to PFAS
 - Drinking water (Revisions to NR 809)
 - Groundwater (Revisions to NR 140)
 - Surface water (Revisions to NR 105, NR 106, and NR 219)
- Holistic approach to regulation is necessary

LEGISLATION

- SB 310/AB 323: prohibits the use of firefighting foams that contain intentionally added PFAS in training.
- SB 109/AB 85: would impose a 90-day timeframe for the establishment of groundwater quality standards for PFOA and PFOS.
- SB 774/AB 845: would create PFAS Management Zones around areas of PFAS contamination. Within these zones, people would be eligible for well compensation funding to provide treatment and/or well replacement. Biosolids land applied within these zones would be subject to testing.

LEGISLATION

- SB 302/AB 321: would require the DNR to establish and enforce standards for a wide range of PFAS. This would include standards for drinking water, surface water, solid waste, soil and sediment among other things, potentially as emergency rules.
- SB 772/AB 843: would require DNR to promulgate emergency rules for groundwater standards, but not surface or drinking water standards, and, as amended, would establish a municipal grant program for PFAS investigation and remediation.

HOW CAN YOU BE INVOLVED?

- Participation in numerous regulatory groups:
 - Wisconsin PFAS Action Council Local Government Subgroup: March
 - PFAS Technical Advisory Groups
 - Rulemaking Stakeholder Group
- Contact with Legislators
- Call us! Vanessa Wishart: www.vwishart@staffordlaw.com

Paul Kent: pkent@staffordlaw.com