MOLECULAR TOOLS FOR OPTIMIZATION OF MAINSTREAM NITROGEN REMOVAL WITH ANAMMOX SELECTING MEMBRANE BIOREACTORS

ANNDEE HUFF, PAIGE NOVAK, MARC HILLMYER, MICHAEL TSAPATSIS, KIWON EUM

SEPTEMBER 25, 2019

CONVENTIONAL VS. ANAMMOX PROCESS

Nitrification

\[
\begin{align*}
\text{NH}_4^+ & \rightarrow \text{NO}_2^- \\
\text{NO}_2^- & \rightarrow \text{NO}_3^-
\end{align*}
\]

Aeration

Denitrification

\[
\begin{align*}
\text{NO}_2^- & \rightarrow \text{NO}_2^- \\
\text{NO}_2^- & \rightarrow \text{N}_2
\end{align*}
\]

Carbon
CONVENTIONAL VS. ANAMMOX PROCESS

Anaerobic ammonia oxidation

\[
\begin{align*}
\text{NH}_4^+ & \rightarrow \text{NO}_2^- \\
\text{NO}_2^- & \rightarrow \text{NO}_3^- \quad \times \quad \text{NO}_3^- \\
\text{NO}_3^- & \rightarrow \text{NO}_2^- \rightarrow \text{N}_2 \\
\end{align*}
\]

Aeration Aeration Carbon

Aerobic ammonia oxidation (AOB)

MORE COST EFFECTIVE PROCESS

![Bar charts showing energy consumption, COD to N ratio, and sludge production for conventional and Anammox processes.](chart.png)

Source: Crawford and Sandino 2010
MAINSTREAM IMPLEMENTATION CHALLENGES

- Anammox microorganisms are limited by:
 - Slow growth rate
 - Temperatures below 30 ºc
 - High carbon concentrations
 - Dissolved oxygen concentrations over 1%
 - Require high levels of influent NH_4^+
 - Hard to stop nitrification at NO_2^-

SIDESTREAM SUCCESS

- WARM

- NH$_4^+$

- NH$_4^+$
IDEAL ANAMMOX MICRO-ENVIRONMENT

ZEOLITE

ZEOLITE

Faujasite

(Rhodes, 2010)
ZEOLITE MEMBRANE AERATED BIOREACTOR

\[\text{NH}_4^+ \rightarrow \text{NO}_2^- \rightarrow \text{N}_2 \]

MABR
HOW WOULD WE USE MOLECULAR METHODS TO DESIGN AND OPERATE THIS SYSTEM?

- Sequencing – who’s there, untargeted
- qPCR – how many, genes (dead and alive)
- FISH – spatial and physical, genes
- RT-qPCR – how many are active, genes (alive)

EXPERIMENTAL STAGES

STAGE 1 – ZEOLITE OPTIMIZATION

25 mL Synthetic Mainstream Wastewater

+ \(\text{NO}_2^- \)

Inoculum: Activated and anammox sludge

STAGE 2 – OXYGEN OPTIMIZATION

25 mL Synthetic Mainstream Wastewater

Inoculum: Activated and anammox sludge

AIR
STAGE 1 – ZEOLITE OPTIMIZATION

1. ZEOLITE PARTICLES VS. GLASS PARTICLES

2. VARYING ZEOLITE MASS

3. ZEOLITE COATED VS. UNCOATED MEMBRANES

x4 (3 g each)
ZEOLITE VS. GLASS PARTICLES

30 Day Average Removal

Effluent Ammonia

Effluent Total Nitrogen

Zeolite vs. Glass Particles - Sequencing

Day 30

Sequencing hits:
- Candidatus Brocadia
- Candidatus
- Anammoximicrobium
- Uncultured Planctomycetes
- Unknown Planctomycetes
ZEOLITE VS. GLASS PARTICLES - qPCR

Percent Anammox Gene on Particles

0.00% 0.01% 0.02% 0.03% 0.04% 0.05% 0.06%

Amx copies
16S copies

Day
1 15 29 43

STAGE 1 – ZEOLITE OPTIMIZATION

1. ZEOLITE PARTICLES VS. GLASS PARTICLES

2. VARYING ZEOLITE MASS

3. ZEOLITE COATED VS. UNCOATED MEMBRANES
VARYING ZEOLITE MASS

Effluent Ammonia

Days

NH₄⁺ mg-N/L

Days

TN mg-N/L

VARYING ZEOLITE MASS

Effluent Ammonia

Days

NH₄⁺ mg-N/L

Days

TN mg-N/L

VARYING ZEOLITE MASS

Effluent Ammonia

Days

NH₄⁺ mg-N/L

Days

TN mg-N/L
VARYING ZEOLITE MASS

Effluent Ammonia

Effluent Total Nitrogen

NITRITE AND NITRATE EFFLUENT
VARYING ZEOLITE MASS - qPCR

Day 30

* Indicates p-value < 0.05

VARYING ZEOLITE MASS - FISH

1.0 g reactor

0.05 g reactor

All bacteria
Anammox
NOB
ACTIVITY MEASUREMENTS
RNA ANALYSIS (RT-qPCR)

STAGE 1 – ZEOLITE OPTIMIZATION

1. ZEOLITE PARTICLES VS. GLASS PARTICLES

2. VARYING ZEOLITE MASS

3. ZEOLITE COATED VS. UNCOATED MEMBRANES

x3 (Equivalent to 0.5 g of zeolite)
MEMBRANE TECHNOLOGY

Growth on surface
Attachment to surface
Embedment into matrix

zeolite
membrane

SORPTION DATA

![Graph showing sorption data](attachment:image)

Growth on surface
Attachment to surface
Embedment into Matrix
MEMBRANES - QPCR

CONCLUSIONS

• Zeolite increased ammonia and TN removal
• Amx gene quantities are not always greater
• Molecular techniques allow us to better understand what microbial processes are occurring and why
SOURCES

CRAWFORD, G., & SANDINO, J. (2010). ENERGY EFFICIENCY IN WASTEWATER TREATMENT IN NORTH AMERICA: A COMPREHEND OF BEST PRACTICES AND CASE STUDIES OF NOVEL APPROACHES. RETRIEVED FROM WWW.WERF.ORG

NATIONAL SCIENCE FOUNDATION. (2014.) FOOD, ENERGY, AND WATER: TRANSFORMATIVE RESEARCH OPPORTUNITIES IN THE MATHEMATICAL AND PHYSICAL SCIENCES.

QUESTIONS?

• Thank you to...
 • Dr. Paige Novak
 • Novak Lab
 • Tsapatsis Lab
 • Dr. Santiago Romero-Vargas Castrillón, Dr. Kiwon Eum, Dr. Michael Tsapatsis and Dr. Marc Hillmyer
 • Undergrad Researchers Kalie Manke, Doug Shield, and Nikhil Khurana
 • LCCMR