Learning from Leaders – Education Seminar 25th Anniversary

Mark your calendars and budget for the CSWEA 25th Annual Education Seminar to be held on April 7, 2020 at Monona Terrace in Madison, WI. We have an exciting program focused on what we can learn from key leaders in the industry.

This is an excellent, affordable event to learn about issues and technical advances from national and local experts. In addition, attendees will earn approximately seven (7) professional development hours (PDHs) for professional engineers and operator’s license requirements.

Who should attend?
Wastewater treatment plant managers and operators, process control specialists, designers, regulators, equipment suppliers, and students involved in wastewater treatment and/or nutrients management. Regulatory agency continuing education contact hours will be awarded.

Seminar location
The seminar will be held at the Monona Terrace Convention Center at One John Nolen Drive, Madison, Wisconsin.

Lodging
A limited number of rooms are available at the Hilton Madison Monona Terrace Hotel, 1 West Dayton Street, Madison. The rooms have been reserved at a conference rate of $149 per night (plus tax) and will be held until March 6, 2020. For reservations, please call 877-510-7465 and use group code CSWEA. Indicate your affiliation with CSWEA Education Seminar. Parking is available at a fee. Other lodging is available nearby at the Best Western Premier Park Hotel (608-285-8000) at a rate of $144 to $194. A reserve block is available until March 9, 2020. This hotel is about 0.7 miles walking distance from the Monona Terrace Community and Convention Center.

DR. BRUCE E. RITTMANN
Director, Biodesign Swette Center for Environmental Biotechnology, Arizona State University

CINDY WALLIS-LAGE
Executive Director, President, Water Business at Black & Veatch

DR. NANCY LOVE
Borchardt and Glysson Collegiate Professor; University of Michigan

DR. ART UMBLE
Senior Vice President, Global Wastewater Practice Leader

MOHAMMED HAQUE
Executive Director, Global Water Stewardship and CSWEA

CARRIE CLEMENT
WLSSD Manager of Planning and Technical Services

TOM KUNETZ
Assistant Director of Monitoring and Research Chicago MWRD

STEVEN R. REUSSER
Adjunct Professor in the Department of Civil and Environmental Engineering

See the CSWEA website for additional information www.cswea.org
The circular economy can be a great opportunity for our primary focus on recovering resources from waste streams and converting them into economic value. But for circular economy to become common, it is necessary that centralized waste treatment facilities are posited for circular economy initiatives because of its relationship to natural systems. The ability of the market to help ensure that resources serving supply chains and urban systems and utilize natural systems for recovery of energy, nutrients, carbon, metals and water. Such natural systems include microbial and phototrophic communities providing organisms for production of biofuels and biopolymers, microelectronic systems that produce power, recovering rare earth elements and the normalization of nutrient treatment networks, with treatment wetlands constructed vertically and horizontally, in breakdown, on ceilings, in buildings, in parks, in street medians, etc., that also2 express with food production. New research is being conducted with the help by researchers and devices. This circular economy points us to the macro-scale challenges so that our contribution is meaningful.

N. An important take-home lesson is that traditional techniques for ‘P removal’ will not work on the journey towards nutrient removal by our industry, and discuss emerging technologies, and partnerships between different stakeholders. This presentation will provide a background new technologies and offer insights into their pros and cons. The circular economy can be a great opportunity for our primary focus on recovering resources from waste streams and converting them into economic value. But for circular economy to become common, it is necessary that centralized waste treatment facilities are posited for circular economy initiatives because of its relationship to natural systems. The ability of the market to help ensure that resources serving supply chains and urban systems and utilize natural systems for recovery of energy, nutrients, carbon, metals and water. Such natural systems include microbial and phototrophic communities providing organisms for production of biofuels and biopolymers, microelectronic systems that produce power, recovering rare earth elements and the normalization of nutrient treatment networks, with treatment wetlands constructed vertically and horizontally, in breakdown, on ceilings, in buildings, in parks, in street medians, etc., that also2 express with food production. New research is being conducted with the help by researchers and devices. This circular economy points us to the macro-scale challenges so that our contribution is meaningful.

The circular economy can be a great opportunity for our primary focus on recovering resources from waste streams and converting them into economic value. But for circular economy to become common, it is necessary that centralized waste treatment facilities are posited for circular economy initiatives because of its relationship to natural systems. The ability of the market to help ensure that resources serving supply chains and urban systems and utilize natural systems for recovery of energy, nutrients, carbon, metals and water. Such natural systems include microbial and phototrophic communities providing organisms for production of biofuels and biopolymers, microelectronic systems that produce power, recovering rare earth elements and the normalization of nutrient treatment networks, with treatment wetlands constructed vertically and horizontally, in breakdown, on ceilings, in buildings, in parks, in street medians, etc., that also2 express with food production. New research is being conducted with the help by researchers and devices. This circular economy points us to the macro-scale challenges so that our contribution is meaningful.

The focus of wastewater treatment innovation over the last 25 years has been on nutrient removal and energy efficiency. Technology has capitalized on amazing bacterial adaptability, and the resulting process developments have been rapid and continuous. The Madison Metropolitan Sewerage District has participated in the innovation explosion since the 1970s, in house research has been combined with annually funding two or more UW-Madison graduate students per year doing applied research. Research Findings have been incorporated into many design ideas, including into several major additions between 1993 and 2016. The MMSD research during this period emphasized biological phosphorus removal, phosphorus recovery, anaerobic digestion systems, and energy conservation. The energy conservation investigations included continued fine bubble diffuser research, low D.O. operation, and optimization of other mixed liquor electrical generation. The work is currently addressing the key people behind them. The focus of wastewater treatment innovation over the last 25 years has been on nutrient removal and energy efficiency. Technology has capitalized on amazing bacterial adaptability, and the resulting process developments have been rapid and continuous. The Madison Metropolitan Sewerage District has participated in the innovation explosion since the 1970s, in house research has been combined with annually funding two or more UW-Madison graduate students per year doing applied research. Research Findings have been incorporated into many design ideas, including into several major additions between 1993 and 2016. The MMSD research during this period emphasized biological phosphorus removal, phosphorus recovery, anaerobic digestion systems, and energy conservation. The energy conservation investigations included continued fine bubble diffuser research, low D.O. operation, and optimization of other mixed liquor electrical generation. The work is currently addressing the key people behind them. The focus of wastewater treatment innovation over the last 25 years has been on nutrient removal and energy efficiency. Technology has capitalized on amazing bacterial adaptability, and the resulting process developments have been rapid and continuous. The Madison Metropolitan Sewerage District has participated in the innovation explosion since the 1970s, in house research has been combined with annually funding two or more UW-Madison graduate students per year doing applied research. Research Findings have been incorporated into many design ideas, including into several major additions between 1993 and 2016. The MMSD research during this period emphasized biological phosphorus removal, phosphorus recovery, anaerobic digestion systems, and energy conservation. The energy conservation investigations included continued fine bubble diffuser research, low D.O. operation, and optimization of other mixed liquor electrical generation. The work is currently addressing the key people behind them.