Sustainable Water and Wastewater Infrastructure Planning and Design Using Envision

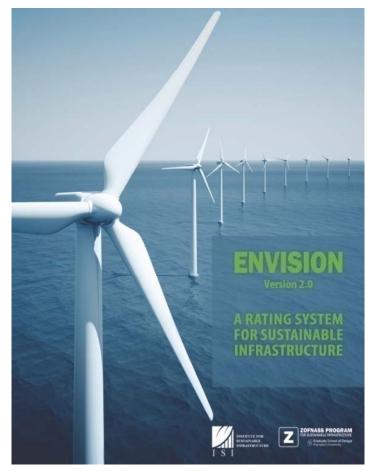
Catharine Richardson, ENV SP – Greeley and Hansen

Agenda

- Introduction to Envision™
- Project Goals
- NYC Green Codes
- Sustainable Design
- Envision™ Strengths and Rating
- Benefits of Using Envision™

Envision[™] is the Sustainable Infrastructure System for Utilities

LEED and Green Globes are for Occupied Buildings


Envision™ is for everything else...

Envision[™] Rating System

- Guidance in Decision Making
- Can be Applied at Any Time
- 5 Categories 60 Credits
 - Quality of Life (QL)
 - Leadership (LD)
 - Resource Allocation (RA)
 - Natural World (NW)
 - Climate and Risk (CR)
- 5 Levels of Achievement
 - Improved (above conventional)
 - Enhanced
 - Superior
 - Conserving (no negative impact)
 - Restorative (highest)

GUIDANCE MANUAL

 Quantify sustainable practices with standardized, nationally-recognized metrics

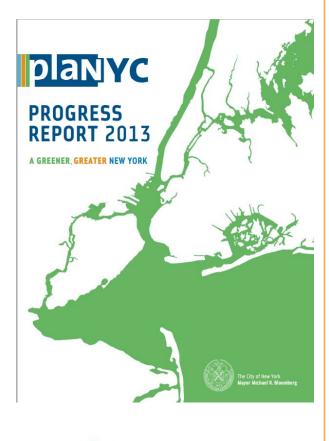
- Quantify sustainable practices with standardized, nationally-recognized metrics
- Incorporate sustainable philosophies into discreet infrastructure projects

- Quantify sustainable practices with standardized, nationally-recognized metrics
- Incorporate sustainable philosophies into discreet infrastructure projects
- Quantify soft benefits of sustainable infrastructure

- Quantify sustainable practices with standardized, nationally-recognized metrics
- Incorporate sustainable philosophies into discreet infrastructure projects
- Quantify soft benefits of sustainable infrastructure
- Compare "impact" of mutually exclusive sustainability options (green roof vs. solar panels)

Project Goals

- Reliable Wet Weather Performance
- Improved Flow Distribution and Solids Handling
- Durability and Energy Efficiency
- Identify Risks
- Reuse Materials
- Energy Efficient and Environmentally Preferable Materials
- Landscaping
- Stakeholder Involvement



NYC Green Codes

 Reduce GHG Emissions – 30% by 2030

LOCAL LAWS

- LL 84: Benchmarking
- LL 85: NYC Energy Conservation Code
- LL 86: Minimum Sustainability Requirements for New and Existing Construction
- LL 87: Energy Audits and Retrocommissioning
- LL 88: Lighting Upgrades & Submetering

1. Pump Upgrades and Sizing

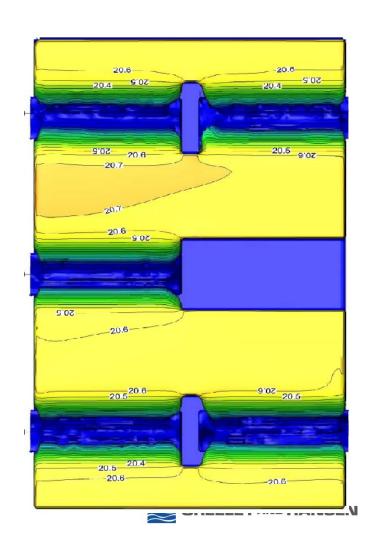
- Three MSPs: 22 MGD Each
 - High efficiency Induction motors
 - Motor Control Panel
- Eight PSPs: 650 GPM Each
- Two SWPs: 18 GPM

- RA 2.1 Reduce Energy Consumption
- RA 3.3 Monitor Water Systems
- LD 3.1 Plan for Long-Term Monitoring & Maintenance

2. Turbo Type Process Air Blowers

- Sized to Meet Current Process Air Demand – 54,000 scfm
- Quieter
- 18% More Efficient than Existing Blowers
- Provision for Future

- RA 2.1 Reduce Energy Consumption
- QL 2.2 Minimize Noise and Vibration
- LD 2.2 Improve Infrastructure Integration



3. Flow Distribution

- CFD Model
- Lower HGL to Reduce Pump Energy Consumption

Credits

 RA 2.1 - Reduce Energy Consumption

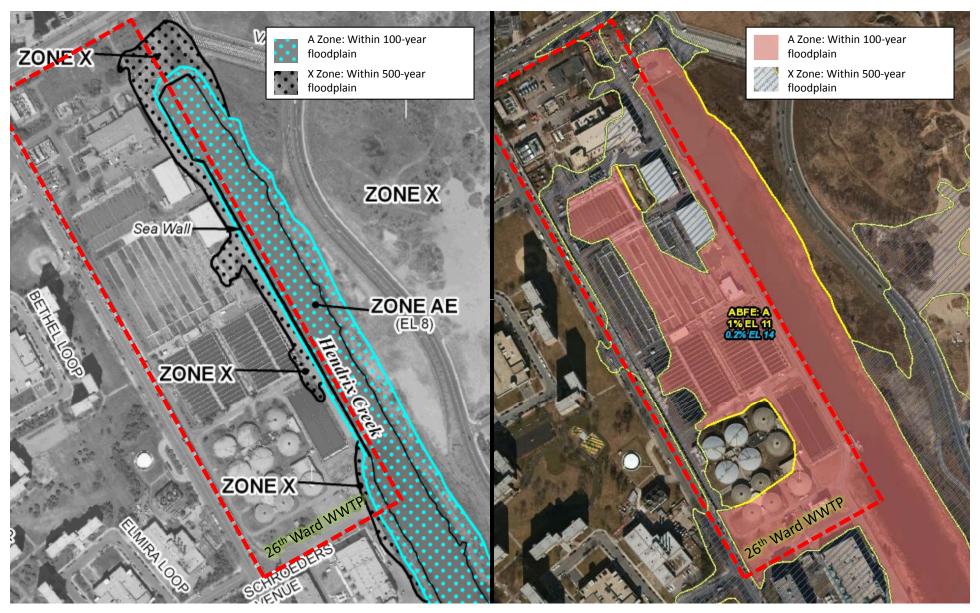
4. Updated FEMA Flood Level

2007 FLOOD MAP

- Limited areas located in an 500year floodplain. No elevation determined
- Majority of the site lies outside the defined floodplain

2014 PRELIMINARY FLOOD MAP

- Serves as a guideline; elevations considered preliminary
- Portions of the site now lie within an A Zone (within 100-yr floodplain) with ABFE of 11FT (NAVD)


NYCDEP 11/26/2013 DESIGN FLOOD ELEVATION GUIDELINES

 Calls for a Design Flood Elevation of 32"+ the ABFE.

NOTE

- NYC Expected to Adopt Preliminary
 Flood Maps in near future
- Local Law

2007 Flood Map BFE: Undefined

2014 Flood Map ABFE: EL 11 FT (NAVD-88)

5. New Switchgear and MCC's

- Located Above DEP Flood Elevations
- Provides Enhanced Plant Energy Monitoring

- CR 2.1 Assess Climate Threat
- CR 2.2 Avoid Traps and Vulnerabilities
- CR 2.3 Prepare for Long-Term Adaptability
- RA 2.3 Commission and Monitor Energy Systems

6. Material Diverted From Landfill

PST Tanks 1-4

- Approximately 5,470 CY of Material
- Identified Volume of Materials
 Diverted from Landfill

Ammonia Building

- Approximately 23 Tons of Steel
- Deconstruction List
- Identify Materials to be Recycled
- Identify Volume of Materials Diverted from Landfill

- RA 1.5 Divert Waste from Landfills
- RA 1.7 Provide for Deconstruction and Recycling greetey and Hansen

7. PST Tanks 5 and 6

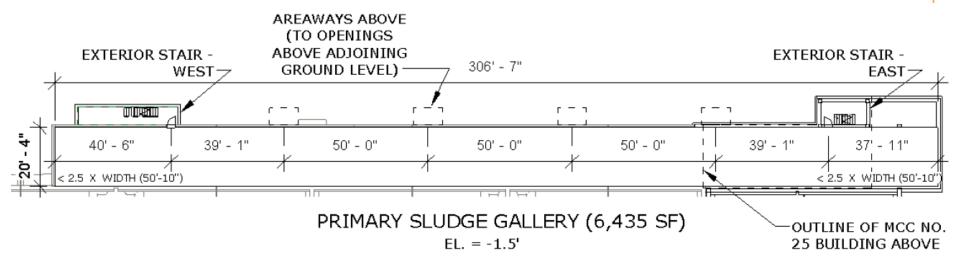
PST Tanks 5 and 6

- Increase Flexibility
- Allow for Future Expansion

Credits

 LD 2.2 – Improve Infrastructure Integration

8. MCC No. 25 Building


- Moving Switchgear Up and Above Floodplain
- Daylighting
- Solar Shading
- Reduced Energy
 Consumption Unheated Stair
 Tower

- RA 2.1 Reduce Energy Consumption
- RA 2.2 Use Renewable Energy

9. Primary Sludge Gallery and Stairway

- Increased Day Lighting
- Energy Efficient "Exterior Stairs"
- LED Lighting

- RA 2.1 Reduce Energy Consumption
- RA 2.2 Use Renewable Energy

10. Materials

- High Recycled Content
 - Aluminum
 - Steel
 - Concrete
- High SRI Roofing
- Preferred Purchasing
- Locally Sourced

- RA 1.2 Support Sustainable Procurement Practices
- RA 1.3 Use Recycled Material
- RA 1.4 Use Regional Materials

11. Roofs (Approx 10,000 SF)

- Pilot test
- Green Roof Potential
- Reduce Run-Off to Sewers by 50-90%

Credits

- NW 2.1 Manage Storm Water
- QL 1.1 Improve community quality of life

24-hr NRCS Type II Storm with 2.18 Inches of Precipitation

Hydrologic Simulation Results						
Roof		Time of	Runoff	Runoff	Runoff	
Runoff Rate	!	Peak	Volume	Volume	Volume	Rainfall
(cfs)	Stormwater Model Used	(min)	(cf)	(gal)	(inches)	Retained (in)
0.43	SBUH	710	1,629	12,187	1.95	0.23
0.06	WBM/PULS	740	354	2,647	0.42	1.76

12. Site Work

- Risk Posed by Pervious Paving Outweighs Benefits
- Landscaping
- No Pesticides
- Storm Water Retention

- NW 2.2 Reduce Pesticide and Fertilizer Impacts
- NW 2.3 Prevent Surface and Groundwater Contamination
- NW 2.1 Manage Storm Water

Life Cycle Analysis (LCA)

- Cradle-to-Grave Life Cycle Analysis
 - Tally[™] Software
 - Modeling Principles: ISO 14040 and 14044
 - Manufacturing, Maintenance, Disposal, Recycling
- Environmental Impact Study Analysis
 - Results per CSI Division
 - Global Warming Potential, Primary Energy Demand
- WWTP process LCA
 - Four Phases
 - Assessment and Interpretation of Analysis Provide Recommendations

Sustainable Design Strengths

- Plan for Long-Term Maintenance and Monitoring (Leadership – LD 3.1)
- Supports Sustainable Procurement Practices (Resource Allocation – RA 1.2)
- Reduce Energy Consumption (Resource Allocation – RA 2.1)
- Monitor Water Systems (Resource Allocation – RA 3.3)
- Avoid Traps and Vulnerabilities
 (Climate and Risk CR 2.2)

Envision™ Checklist Score

Next Steps

- Full Project Assessment
 - Log Project into Envision Portal
- Verification
 - Waiting on final award based on Verification

Why Use Envision™?

- Incorporate Sustainable Philosophies into Discreet Infrastructure Projects Across Agency/City/ Authority
 - <u>Economic</u>: Reduced Costs
 - Environment: Stormwater Management
 - <u>Social</u>: Noise Reduction
- Improve Infrastructure Integration
- Meet Community Needs and Interests

