Bench-scale Study of Anaerobic Digester Foaming

Sharon C. Long and Amanda Siebels
University of Wisconsin
and
Madison Metropolitan Sewerage District
Factors that Affect Foaming

- Volatile fatty acid composition
- Hydrophobic substances in the solids
- Filamentous bacteria in the waste activated sludge (WAS)
 - *Gordonia*, *Microthrix*, *Tsukamurella*, *Nocardia*, *Skermania* and *Rhodococcus*
Study Design

- Bench scale reactors
 - Seeding with center well foam vs. known filamentous foam-related cultures
 - Mesophilic vs. thermophilic
 - Acid digestion of feed

- Parameters monitored
 - Nitrogen and phosphorus
 - Volatile fatty acids
 - Foaming potential – alka-seltzer and aeration
 - Gram stains – presence of filamentous organisms

- Daily draw and feed for 3xSRT (SRT ~ 18 days)
Phase I

- Control - feed solids (4.5% dry wt) mix of Primary and WAS
- Inoculation with center well foam
- Inoculation with *Skermania* and *Rhodococcus*
Is it foaming or not foaming?

- Alka-seltzer test
 - Requires 11 minutes to dissolve
 - Foam remains for > 4 minutes after tablets dissolve

- Aeration
 - Aerate with aquarium pump (~1L/min) for 5 minutes
 - Measure V_0 and V_{max}

Foamy = alka-seltzer foam remains > 4 minutes, $V_{\text{max}} > 1.2 \times V_0$
Phase I – Gram stain

Not foamy

Foamy
Phase I - VFAs

Total Volatile Fatty Acids (mg/L)

- Control Digester
- Center Well Digester
- Culture Seed Digester
- Feed

Date

Not Foamy

Foamy
Study Design (2)

On-going
- Phase II
 - Control – feed solids
 - Thermophilic
 - Acid digest → thermophilic

Not foamy

Thermophilic

Control

Acid - Thermophilic
Preliminary Findings

- Decreased volatile fatty acid composition of feed associated with foaming
 - Hypothesis: greater proportion of BOD as hydrophobic materials and incorporated into filament membranes
- Character of primary and WAS solids (as affected by season) significant in bench-scale foaming
- Higher densities of filamentous organisms significant in bench-scale foaming
- Thermophilic treatment results in “empty” filaments
Continued Work

- Completion of Phase II
- Statistical analysis of monitoring data
 - Identify factors that change similarly with foaming character at bench scale
 - Evaluate whether acid digestion and/or thermophilic digestion can suppress foaming
- Conduct Phase III next foaming season to confirm findings from above