

Recovering the Lost P in Used Water

Bruce E. Rittmann

Regents' Professor of Environmental Engineering Director of the Swette Center for Environmental Biotechnology

Biodesign Institute at Arizona State University

Multiple Major Resources

- Energy in the BOD
- Nutrients the P and N
- Clean Water

Enhancing environmental and economic value propositions

Multiple Major Resources

- Energy in the BOD
- Nutrients the P and N
- Clean Water

Enhancing environmental and economic value propositions

Phosphorus Recovery -- Need

 Globally, only about 16% of mined P ends up in human food. Most of the rest is lost along the way to agricultural run off (46%) and animal wastes (40%).

Simplified Summary of the Global P Flows According to the Estimates of Cordell et al. (2009)

Flow of P	% of Mined Input
Mined Input	100
Phosphate Fertilizer Production	85
Phosphate Fertilizer Applied to Arable Soil	80
Soil Erosion & Runoff Losses	46
Crops Harvested	40
Animals Produced from fertilized crops	15
Animal Wastes	40
Into Human Food	23
Consumed and Excreted by Humans	16
Sewage P Discharged to Waters	8
Sewage solids	7

Phosphorus Recovery -- Need

- Globally, only about 16% of mined P ends up in human food. Most of the rest is lost along the way to agricultural run off (46%) and animal wastes (40%).
- Major P reserves are present in only five countries, and "cheap" reserves will deplete in a few decades.
- We must recover the "lost P" in order to sustain modern agriculture, as well as protect water quality from eutrophication.

Phosphorus Recovery – Opportunity

- P recovery from high-strength organic streams is naturally linked to energy recovery.
 - Hydrolysis, fermentation, and oxidation of organic matter releases inorganic P (ortho-PO₃³⁻)
- Generation of a concentrated and mobile P supply provides a new revenue stream → improving the value proposition.

Energy- and P-reborn Strategy

What has been the holdup with methanogenesis?

- Slow-growing methanogens
 - Need excellent biomass retention
- Inadequate effluent quality for BOD
- Dissolved CH₄
 - Loss of CH₄ energy
 - Greenhouse gas emission
- Sulfate reduction
 - Odors and loss of CH_4 energy
- Minimal N and P removals

P-Recovery Options

- Must yield a P product that is available in agriculture.
- Fe-phosphate solids are not available!
- Thus, the usual P-removal approach is not useful for P recovery.

Center for Environmental Biotechno

Precipitation of Struvite

- Struvite (magnesium ammonium phospha hexahydrate, MgNH₄PO₄•6H₂O) has multiple commercially available configurations, including PHOSNIX, Rem-Nut, and Ostara processes.
 - Struvite precipitation occurs readily once phosphate reaches 100

Current dilemma: high cost, but with a low-value output.

- Hydroxyapatite (Ca₅(PO₄)₃OH) requires the presence of Ca²⁺ and high pH (typically ≥ 10). Another alternative is CaNH₄PO₄•H₂O, which is a slow-release fertilizer.
 - To make P more bioavailable, it may be necessary to acidify the product and/or add chelating agents (e.g., EDTA)

Hybrid Ion-Exchange (HAIX)

Anion exchange resin beads impregnated with hydrated ferric oxide (HFO) nanoparticles

Hydrous Ferric Oxide Filter

BluePRO[®] technology from Blue Water Technologies

Other Promising Options

- PO_4^{3-} -selective sorbents based on AI or Ti oxides.
- Sub-micron-sized biochar that is added to the liquid stream and works as a single-use sorbent after separation via flotation.
 - Can be synthesized inexpensively from a wide array of agricultural waste products.
 - Can be chemically synthesized in large quantities in ways similar to graphene.
 - Sub-micron-sized materials have high external surface area to maximize sorption potential and short intra-particle paths that lead to rapid sorption mass transfer kinetics.
 - Their surface chemistry can be engineered to enhance N & P sorption.

Multiple Major Resources

- Energy in the BOD
- Nutrients the P and N
- Clean Waters

Enhancing environmental and economic value propositions

An example resource factory for domestic wastewater

Unit: per m³ treated used water

From: Li, W.-W., H.-Q. Yu, and B. E. Rittmann (2015). Reuse water pollutants. *Nature* 528: 29 – 31.

Center for Environmental Biotechnology

Economic Value Proposition

Techno-economics comparison, AD vs MXC annual operations revenue & expenses 6,500 dairy cow scenario

WATER WORKS

Take-home Lessons

We also can **capture P** (and N)

- –We will need the P for agriculture
- -It turns an apparent treatment liability into a resource benefit
- -Mature and emerging methods are available

Center for Environmental Biotechnology

Bulk Liquid Biofilm

Recovering the Lost P in Used Water

Bruce E. Rittmann

Regents' Professor of Environmental Engineering Director of the Swette Center for Environmental Biotechnology

Biodesign Institute at Arizona State University

Rittmann@asu.edu

http://environmentalbiotechnology.org