Chloride Compliance Strategies at the Nine Springs Wastewater Treatment Plant

November 2015 CSWEA Webinar

Kathy Lake
Madison Metropolitan Sewerage District

Lucy Pugh
AECOM
Mission
Protect public health and the environment

Vision
Enriching life through clean water and resource recovery

Resources
• 40 MGD treated effluent returned
• 38 MG of fertilizer applied to region farms annually
• Generate 35% energy needed to operate our system
Every Day...110 Tons

90 Ton Pile
MMSD receives over 1,500,000 lbs of salt each week. All of that ends up in local streams.

1 tsp salt dissolved in 5 gals of water = 230 mg/l chloride
230 mg/l chloride = EPA limit for chronic toxicity in streams
Water Supply: 57%
Human contribution: 8%
Road Deicing: 8%
Industrial: 7%
NSWTP chemicals, septage, hauled wastes: 18%
Softening: 2%
Chloride Compliance Alternatives
Chloride Variability

Chloride Concentration, mg/L

Weekly Average Discharge Limit, mg/L

Chloride Concentration, mg/L

200 250 300 350 400 450 500 550 600 650 700
Flow Variability

Chloride Concentration, mg/L
Weekly Average Discharge Limit, mg/L
Flow, mgd

Flow, mgd
Chloride Concentration, mg/L
Flow, mgd
Chloride Concentration, mg/L

Chloride Removal Targets

Expected NSWTP chloride limit: 395 mg/L

<table>
<thead>
<tr>
<th>Design Condition</th>
<th>Chloride Removal lbs/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current flow, average chloride load</td>
<td>8,500</td>
</tr>
<tr>
<td>Current flow, maximum chloride load</td>
<td>37,500</td>
</tr>
<tr>
<td>Future flow, average chloride load</td>
<td>26,200</td>
</tr>
<tr>
<td>Future flow, maximum chloride load</td>
<td>60,000</td>
</tr>
</tbody>
</table>
Chloride Compliance Options

• Source reduction
 • Reduce chloride in water supply due to softening
 • Reduce chloride from industrial sources

• Reduction at NSWTP
 • Minimize chemicals that contribute chloride
 • Provide treatment to remove chloride
Alternatives – Source Water Softening

Source water softening

• Reduces need for residential, commercial, and industrial softeners

• Design capacity
 • 50 mgd firm
 • 24 mgd average
 • 340 mg/L hardness as CaCO$_3$
Source water softening

- Technologies
 - Lime softening
 - Ion exchange
 - Membrane separation
- Treatment location
 - Wellhead
 - Centralized facility
Source water softening – challenges

- Multiple communities, multiple well sites
- Significant pumping and distribution modifications
- Varying level of water service (unless all water is softened)
- Increased hydraulic load to NSWTP
- Requires discontinued use of zeolite softeners
Chloride treatment at NSWTP

- Remove chloride from a portion of the effluent
- Blend treated and untreated effluent to achieve target chloride concentration
- Design capacity
 - 15 mgd firm
 - 2.6 mgd average (current); 7.3 mgd (future)
 - 400 – 560 mg/L chloride
Chloride treatment at NSWTP

- Technologies
 - Reverse osmosis
 - Electrodialysis reversal
 - Ion exchange
- Each technology produces high volume of waste
Brine handling

- Reduce volume of concentrated waste to facilitate beneficial use/disposal
- Design capacity
 - 1.5 mgd firm
- Technologies
 - Evaporation
 - Crystallization
Chloride treatment at NSWTP – challenges

- Chloride is very soluble; difficult to remove
- Technologies are not selective for chloride
- Produces significant volume of concentrated waste
- Technologies to reduce waste volume are expensive to construct and operate
- Significant space requirement
Alternatives Development

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>Source water softening at the wellhead (22 wells)</td>
</tr>
<tr>
<td>1B</td>
<td>Source water softening at centralized facility (50 mgd firm)</td>
</tr>
<tr>
<td>2A</td>
<td>Treatment at NSWTP – RO and brine disposal</td>
</tr>
<tr>
<td>2B</td>
<td>Treatment at NSWTP – RO, evaporation of brine and disposal</td>
</tr>
<tr>
<td>2C</td>
<td>Treatment at NSWTP – RO, evaporation and crystallization of brine and disposal</td>
</tr>
<tr>
<td>3A</td>
<td>Treatment at NSWTP – EDR and brine disposal</td>
</tr>
<tr>
<td>3B</td>
<td>Treatment at NSWTP – EDR, evaporation of brine and disposal</td>
</tr>
<tr>
<td>3C</td>
<td>Treatment at NSWTP – EDR, evaporation and crystallization of brine and disposal</td>
</tr>
</tbody>
</table>
Capital and Annual Costs

<table>
<thead>
<tr>
<th>Capital Cost</th>
<th>Annual O&M Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>$50,000,000</td>
<td>$20,000,000</td>
</tr>
<tr>
<td>$100,000,000</td>
<td>$30,000,000</td>
</tr>
<tr>
<td>$150,000,000</td>
<td>$40,000,000</td>
</tr>
<tr>
<td>$200,000,000</td>
<td>$50,000,000</td>
</tr>
<tr>
<td>$250,000,000</td>
<td>$60,000,000</td>
</tr>
</tbody>
</table>
Net Present Value

Net Present Value

$ - $500,000,000

$1,000,000,000

$1,500,000,000

$2,000,000,000

$2,500,000,000

1A 1B 2A 2B 2C 3A 3B 3C
Triple Bottom Line Analysis

- TBL used to narrow down options and evaluate alternatives
- Manages complexity in multiple criteria decision-making
<table>
<thead>
<tr>
<th>Financial & Operational</th>
<th>Weighting</th>
<th># Indicators</th>
<th>Scoring Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1 Capital Cost</td>
<td>5</td>
<td>1</td>
<td>Ordinal method</td>
</tr>
<tr>
<td>F2 O&M Cost</td>
<td>5</td>
<td>1</td>
<td>Ordinal method</td>
</tr>
<tr>
<td>F3 Avoided costs</td>
<td>4</td>
<td>1</td>
<td>Ordinal method</td>
</tr>
<tr>
<td>F4 Chloride efficiency</td>
<td>4</td>
<td>1</td>
<td>Ordinal method</td>
</tr>
<tr>
<td>F5 Process complexity</td>
<td>3</td>
<td>5</td>
<td>Threshold method</td>
</tr>
<tr>
<td>F6 Operational risk</td>
<td>4</td>
<td>4</td>
<td>Threshold method</td>
</tr>
</tbody>
</table>

Environmental

E1 Energy Use	4	1	Ordinal method
E2 Air Quality Impact	3	1	Threshold method
E3 Noise Impact	2	1	Ordinal method
E4 Plant Carbon Footprint	3	2	Ordinal method
E5 Land Use Impact	2	3	Linear/Gradient method
E6 Byproduct reuse potential	4	1	Ordinal method
E7 Impact on effluent quality	3	3	Ordinal method

Social & Community

S1 Leadership/Community Image	3	3	Linear/Gradient method
S2 Public Acceptance	3	3	Linear/Gradient method
S3 Worker Safety	4	2	Linear/Gradient method
S4 Public Health Impact	3	3	Linear/Gradient method
Selecting Options and Defining Alternatives

1. Data Forms to capture project/option details

2. Interactively ‘Assemble’ Project Alternatives

3. View Summaries of Alternatives
Results of TBL Analysis
Comparison of TBL Scores
Conclusions

• Reducing chloride in the NSWTP effluent is a complex issue.

• There is no clear “best” approach; alternatives perform strongly in some categories and poorly in others.

• Chloride elimination and/or treatment is very costly.

• Study provides foundation for further development of compliance strategy.
Salt Impacts All Water

Madison/Dane County Public Health, Road Salt Reports
One Water Solutions

- Partnerships:
 - Homeowners and Businesses
 - Industries
 - Municipalities/Agencies
- New Tools:
 - Behavior Change
 - Training Programs
 - Education campaigns
 - Grant/incentive programs
- Investing resources differently

Let's be Salt Wise!

Road Salt Related News
Water Utility draws attention to Wellhead Protection Areas
A Solution to a Salty Problem
Road salt impact reaches "critical point" in Dane County

What did WI spend on salt for its highways last year?

$40,456,343!
And that doesn’t include what communities, businesses and homeowners spent!

So, how many tons of salt is that?

669,807 tons
That many tons permanently pollute almost half a trillion gallons of Wisconsin’s water.

That’s about...

52,500

www.WiSaltWise.com
Questions

Kathy Lake kathyl@madsewer.org
Lucy Pugh lucy.pugh@aecom.com