GAS TREATMENT
FOR REMOVAL OF HYDROGEN SULFIDE AND SILOXANES

Presentation to WEF R2E Group

Jim Postiglione, HR Green
HYDROGEN SULFIDE (H$_2$S) Notes:

Gas Concentrations:
- Depends on feed to anaerobic digester, or wastes accepted at landfill
- Anaerobic digester concentrations from 100 - >10,000 ppmv
- Landfill 50 – 5000 ppmv

Properties:
- Heavier than air gas with low TLV/SEL
- Liquid/Gas Partitioning:
 - Present in liquid as an ion or a dissolved gas:
 - $\text{Ka}/[H^+] = [\text{HS}^-]/[\text{H}_2\text{S}]$
 - $p\text{Ka} = 7.1$ (25°C)
 - Henry’s Law:
 - $[\text{HS}^-] = K_h \times P(\text{H}_2\text{S})$
 - $K_h = 0.1$ mol/L-atm
H₂S REMOVAL TECHNOLOGIES

Technologies by H₂S Loading:

- Activated Carbon Adsorption
- Chemical Scrubbing
- Sacrificial Media
- Biological Conversion to Sulfate
- Biological Conversion to S₀
- Proprietary Gas/Liquid Contact
- Electrolysis (New)
SACRIFICIAL MEDIA SYSTEMS

Media Types:
• Iron Sponge (Varec, Shand & Jurs, ...)
• Enhanced Fe Sponge (MV Tech)
• Iron Oxide Coated Substrate (Sulfa Treat, Axens, ...)
• FeOH Media (Unison, Ferrosorp)

Modeling / Changeout Considerations:
• Gas flow, H2S concentration and effluent concentration
• Gas moisture and oxygen concentration
• Form of spent media (loose vs clumps)
• Exothermic temperature rise after media removal
H$_2$S MEDIA EXAMPLE
BIOLOGICAL TREATMENT SYSTEMS

Conversion to Sulfate:
• Range and variability of loading
• Potential polish media for high concentrations and low effluent required
• Neutralization of wastewater
• Dilution of product gas (for high inlet concentration)

Conversion to S_0:
• Range and variability of loading
• Potential polish media for high concentrations and low effluent required
• Larger space required
• Dewatering of waste, potential S_0 reuse
BIOLOGICAL H₂S TREATMENT
Siloxane Treatment

Degree of Treatment Based on Fuel Use:
- **Medium efficiency reciprocating engines**
- **Turbine with recuperator**
- **High efficiency reciprocating engines**
- **Microturbines**
- **CHG / RNG**
- **Emission control catalyst**

Varying Physical Properties:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Abbreviation</th>
<th>MW</th>
<th>Vapor Pressure</th>
<th>Boiling Point</th>
<th>Melting Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trimethylsilyl fluoride</td>
<td></td>
<td>92.19</td>
<td>760</td>
<td>60.8</td>
<td>-101.2</td>
</tr>
<tr>
<td>Ethoxytrimethylsilane</td>
<td></td>
<td>118.25</td>
<td>400</td>
<td>165.2</td>
<td>-117.4</td>
</tr>
<tr>
<td>Isopropoxytrimethylsilane</td>
<td></td>
<td>132</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propoxytrimethylsilane</td>
<td></td>
<td>132</td>
<td>40.2</td>
<td>214.88</td>
<td>32</td>
</tr>
<tr>
<td>Hexamethyldisiloxane</td>
<td>D3</td>
<td>222</td>
<td>10</td>
<td>275</td>
<td>147</td>
</tr>
<tr>
<td>Octamethyldisiloxane</td>
<td>D4</td>
<td>297</td>
<td>1.3</td>
<td>348</td>
<td>63</td>
</tr>
<tr>
<td>Decamethyldisiloxane</td>
<td>D5</td>
<td>371</td>
<td>0.4</td>
<td>412</td>
<td>-47</td>
</tr>
<tr>
<td>Dodecamethyldisiloxane</td>
<td>D6</td>
<td>445</td>
<td>0.02</td>
<td>473</td>
<td>26.6</td>
</tr>
<tr>
<td>Hexamethyldisiloxane</td>
<td>L2, MM</td>
<td>162</td>
<td>31</td>
<td>224</td>
<td>-88.6</td>
</tr>
<tr>
<td>Octamethyldisiloxane</td>
<td>L3, MDM</td>
<td>236</td>
<td>3.9</td>
<td>307</td>
<td>-115.6</td>
</tr>
<tr>
<td>Decamethyldisiloxane</td>
<td>L4, MD2M</td>
<td>310</td>
<td>0.55</td>
<td>381</td>
<td>-90.4</td>
</tr>
<tr>
<td>Dodecamethyldisiloxane</td>
<td>L5, MD3M</td>
<td>384</td>
<td>0.07</td>
<td>446</td>
<td>-113.8</td>
</tr>
<tr>
<td>Trimethylsilanol</td>
<td>TMS</td>
<td>90</td>
<td>19</td>
<td>210</td>
<td>10.4</td>
</tr>
<tr>
<td>Tetramethylsilane</td>
<td></td>
<td>88.2</td>
<td>11.66</td>
<td>82</td>
<td>-187</td>
</tr>
</tbody>
</table>
TREATMENT OPTIONS

Non-Regenerable Systems
• Activated carbon adsorption
• Silica gel adsorption
• Refrigeration systems

• Treatment capacity can be influenced by H₂S or VOC loading

Regenerable Systems
• Temperature swing adsorption
• Requires regen flare
• Media ranges from activated alumina to molecular sieve
• Can be followed by AC or 2nd regen system
REGENERABLE EXAMPLES